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Abstract— Tactile sensing on human feet is crucial for motion
control, however, has not been explored in robotic counterparts.
This work is dedicated to endowing tactile sensing to legged
robot’s feet and showing that a single-legged robot can be
stabilized with only tactile sensing signals from its foot. We
propose a robot leg with a novel vision-based tactile sensing
foot system and implement a processing algorithm to extract
contact information for feedback control in stabilizing tasks. A
pipeline to convert images of the foot skin into high-level contact
information using a deep learning framework is presented. The
leg was quantitatively evaluated in a stabilization task on a
tilting surface to show that the tactile foot was able to estimate
both the surface tilting angle and the foot poses. Feasibility and
effectiveness of the tactile system were investigated qualitatively
in comparison with conventional single-legged robotic systems
using inertia measurement units (IMU). Experiments demon-
strate the capability of vision-based tactile sensors in assisting
legged robots to maintain stability on unknown terrains and the
potential for regulating more complex motions for humanoid
robots.

I. INTRODUCTION

The ability of locomotion in various environments is
critical for robots. As robots evolving beyond conventional
industrial working scenarios, the ability to navigate through
terrains that are unstructured, dynamic, and even unknown
becomes significant. For humanoid robots, a fundamental
requirement in executing tasks is maintaining balance since
legged robots have naturally unstable dynamics due to their
inverted-pendulum-like architecture.

When the terrain is known, the robot’s gait can be prede-
termined using model-based methods such as in [1] and [2],
or learning-based methods such as in [3]. However, in most
practical scenarios, terrains to cover are usually unknown
or at least inaccurate. Therefore, in this case, evaluation of
contact condition between the robot’s feet and the ground
becomes a prerequisite for the control system to perform
effective adaptation to the terrain. Various methods have been
developed to map the terrain information for robot control
and planning, of which perception media include camera [4],
laser scanner [5] and radar [6]. However, such remote sensing
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Fig. 1. Prototype of the vision-based tactile sensing augmented single-
legged robot.

techniques are limited in accuracy and indirect that cannot
reflect subtle yet important changes on contact surfaces
between robot feet and terrain [7].

Inspired by the nature that haptic sensing plays an impor-
tant role for animals to explore the environment, researchers
apply force-torque (FT) sensors on measuring reaction force
in joints and ground reaction force (GRF) on legs. The
reactive force and torque signals are used for collision
detection and feedback control to maintain stability against
contact with obstacles [8]–[10]. Apart from the proprio-
ceptive devices used, tactile sensors for balancing have
not been widely adopted in humanoids, even considering
being irreplaceable in haptic systems. As for the reasons,
the underdevelopment of both hardware and algorithms are
impeding the integration of tactile sensors into the humanoid
stabilizing system. Conventional tactile sensors fall short
in higher-level applications, as they usually provide mea-
surement with low resolution and inadequate dimensionality.
Besides, interfaces of hardware and data processing become
significantly complicated as the number of sensing units
scales up when larger sensing areas are demanded. This also
makes the fabrication process complicated and expensive.
Therefore, an easy-fabricated, multidimensional, high reso-
lution, computationally efficient tactile sensor is urgent to be
developed.

Recently, vision-based tactile sensors which interface
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multi-axial contact information with high resolution have
been emerging as a novel branch of tactile sensors [11].
Various sensors, e.g. Gelforce [12], FingerVision [13], Gel-
sight [14] and Gelslim [15], are presented and applied to
robotic systems in perceiving contact information. Especially
in attempting to apply tactile sensors on robot’s feet, Stone et
al. developed a biomimetic vision-based tactile sensor called
TacTip and mounted it onto a foot of a quadrupedal robot
for tactile feedback [7]. These works have demonstrated
the superiority of vision-based tactile sensors in signaling
important contact-related information. In this paper, we pro-
pose the design of a vision-based tactile sensing augmented
single-legged robot (shown in Fig. 1) accompanied with a
contact information extraction method, which captures the
interaction between ground and foot. Experiments including
pose estimation of both foot and ground, and feedback
control to maintain stability are conducted to demonstrate
the potential of the vision-based sensor in assisting legged
robot’s locomotion.

This work contributes in mainly two perspectives:
• Presenting a novel single robot leg design with a vision-

based tactile sensing foot.
• Developing a deep learning-based contact information

extraction framework and presenting integration into a
legged robot stabilizing system.

The paper is structured as follows. Section II introduces
previous works related to tactile feet for legged robots and
vision-based tactile sensors. In section III, we extensively
describe the design and fabrication of the system, and the
method to transform image signal to contact information. In
section IV, experiments including contact pose estimation
and feedback control tasks are elaborated. We also compare
our system with systems with conventional IMU sensor
configurations. In section V, conclusions are drawn.

II. RELATED WORKS

A. Tactile Feet for Legged Robot

Previous attempts have been made to extend the appli-
cation of tactile sensing onto legged robots and focused
mainly on dynamic or static regulation with force/stress
signals. Takahashi et al. [16] designed and fabricated a high-
speed pressure sensor based on thin conductive rubber to
measure the distribution of normal force between the feet of
a humanoid robot and the ground. Center of pressure (COP)
was also measured for dynamic analysis. Other researchers
explored beyond force analysis, Suwanratchatarnanee et al.
[10] developed a tactile sensing foot to recognize the slope of
terrain by using three resistor-based transduction elements.
The active adaptation was implemented to adjust the orien-
tation of the foot and balance the robot with force signal as
the feedback input. However, compared to the touch sensing
ability of human feet, these measurements were limited
in both dimensionality and resolution such that incomplete
information was obtained.

With improvements on sensor technologies, high-level
information can be obtained by tactile foot sensing systems.

Acrylic plate

Soft gel

Patterned sticker

Silver paint

Protection gel

Pi camera

Housing frame

LED

Random Color Pattern

Fig. 2. Schematic of sensor structure. The image on top-left is the zoomed
random color pattern. Each color patch is 0.1×0.1 mm2.

Researchers applied statistical method [17] and learning-
based methods including Support Vector Machine [18], [19]
and Neural Networks [20] for terrain type classification.
Guadarrama-Olvera et al. managed to detect edges of obsta-
cle and compute supporting polygon using plantar robot skin
[21]. These works adapted algorithms of real-time complex
feature extraction from measurements of basic physical con-
tact. In this work, we integrate a vision-based tactile sensor
as a foot in a single-legged robot. Based on the system, we
develop algorithms to estimate contact poses solely from the
acquired tactile images that are further used as the feedback
input of the feedback control to reach a balanced state.

B. Vision-based Tactile Sensor

Vision-based tactile sensors are gaining more and more
attention for their superior tactile resolution, easy fabrication,
robust electronics, compact form-factor, and simple multi-
plexing peripherals. Regarding capacity in multiple measure-
ments and versatility in extracting various level of features,
vision-based tactile sensor acquires multi-modal contact in-
formation including deformation [13], texture [22], contact
area localization [15], geometry reconstruction [22] and force
estimation [23][24]. Beyond these low-level contact infor-
mation, vision-based tactile sensors have been performing
effectively in high-level tasks like object recognition [25],
localization of dynamic object [26], simultaneous localiza-
tion and mapping of the sensor on objects [27], slip detection
[28] and a fine-grained contact events classification [29].

While most previous applications of vision-based tactile
sensors draw the scope of signal collection on fingertips
[30][25], there exist other forms of vision-based tactile
sensors. McInroe et al. presented an arm tip with integrated
tactile sensing and pneumatic actuation [31]. Similarly,
Cramphorn et al. in [32] fabricated a dome-shape tactile
sensor called TacTip that was installed as an end effector
on a manipulator. Then, Stone et al. in [7] installed TacTip
on the end of the robot leg to achieve stable walking. It
shows that vision-based tactile sensors are not limited to
fingers and can serve other applications where high-quality
contact information is required. Here, we investigate the
capability of our previously developed vision-based tactile
sensor FingerVision in estimating complete contact infor-
mation for a stabilizing task of a single-legged robot to
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Fig. 3. Visualization of DIS optical flow output. The tactile sensor is put on a ground plate with an adjustable tilting angle from -20 degrees to +30
degrees, where the plate is horizontal at 0 degrees. Six displacement vector fields corresponding to the deformation at certain degrees are shown based on
the non-contact image as their reference frame. The magnitude and direction of arrows represent the displacement of the pixel. For clean visualization,
we only plot vectors sparsely and scale their magnitude. Red vectors in each figure represent the optical flow in the current state, and the blue vectors
represent the optical flow of the state on its left to have a better sense of the frame-to-frame difference.

maintain balance on a tilted platform during actuation, and
the results show that the sensor can be used to not just replace
but even surpass conventional pose sensing configurations in
humanoids.

III. SYSTEM AND METHODS

In this section, a detailed description of the sensor design,
fabrication process, and processing algorithms to retrieve
useful contact information are elaborated. As illustrated in
Fig. 2, the tactile sensing foot is the assembly of several main
components: 3D printed sensor shell, acrylic plate, elastomer
skin, camera, and illumination system. The most important
part is the elastomer skin, which has a multi-layer structure
with a random color pattern to reflect the interaction between
foot and ground in the form of displacement field signals.

The principle of the sensor is straightforward. Once the
skin makes contact with external objects and deforms, the
camera captures the new image of the pattern on the skin. A
dense optical flow algorithm can then track the displacement
of color patches on the pattern and obtain the spatiotemporal
displacement field of the skin surface. Given the displace-
ment field, features of different complexity can be extracted
and utilized for various applications. More specifications will
be detailed in the following subsections.

A. Tactile Sensor Design and Fabrication

Fabrication of the tactile foot takes account of various
aspects, and we propose the design of sensor structure as
shown in Fig. 2. First, the camera’s field of view (FOV)
is required to cover the large area of 1000×800 mm2 at a
distance of 80 mm. We choose Raspberry Pi Camera V2
with a fisheye lens to obtain a FOV of 160 degrees and an
adjustable focal length. The camera is installed on top of
the sensor housing frame. And the thickness of the housing
frame is 3mm so that the strength of the sensor’s main
body to withstand force from the leg is guaranteed. Then a
top plate supports the ankle joint strongly with a reinforced
design.

The gel material in this sensor is a transparent, hypere-
lastic, and durable silicone rubber (shore hardness of 20A).
Before the gel is applied, an acrylic plate is fixed inside the
housing frame to support the gel. Then the solvents of two-
part silicone rubber are mixed in a 1 : 1 ratio and cured
in the mold for casting. When formed, an elastomer layer

is adhered firmly under the acrylic plate and serves as the
deformation interfacing substrate. The shape of the elastomer
is convex to compensate for a higher level of compression
at the center region of the skin.

In order to acquire the skin deformation, a sticker of
1050×850 mm2 adheres onto the surface of the elastomer
layer. This random color pattern sticker, as shown in Fig. 2
top left, is printed on a thin flexible adhesive film by laserjet
printers. The pattern is generated based on the principle that
every color patch will have the largest distance in the RGB
space compared with its 8 neighbors through random number
selection in RGB space. Considering the limitation of the
camera resolution and jet printing, the size of the square
random color patch is 0.1×0.1 mm2 was achieved. A thin
frosted paint layer made of limonene, silicone, and silver
paint is sprayed on the patterned sticker. It isolates potential
external light disturbance, blocks background scenes, and
also disperses lights from the LEDs to provide a relatively
uniform illumination inside the sensor. More durable silicone
rubber is coated as the protection gel to reinforce the
durability of the elastomer.

Since the sensor is fully covered with opaque material,
proper illumination is necessary. 8 LED lights are mounted
around the elastomer layer. A semi-transparent frosted plastic
plate is placed in front of each LED to generate a more
diffused light. Four 3D printed parts are used to fix the LEDs.
Finally, four counterweights are added in the front of the
sensor housing frame to balance the center of mass.

B. Extraction of Contact Information

We propose a method to extract features from the elas-
tomer’s deformation, where high-level information, such as
the pose of the foot θf and slope of the ground θg , are
obtained for downstream applications. The pipeline of pro-
cessing raw image is demonstrated in Fig. 4. A sequence of
image is captured by the camera with resolution of 640×480
at 90 frame per second. Then they are sent to host machine
with a cropped region of interest (ROI) and scaled resolution
of 214×182 to enhance the speed of processing in further
analysis.

Fast Optical Flow with Dense Inverse Search (DIS)
We use the dense inverse search (DIS) optical flow algo-
rithm [33] featuring more efficient computation to obtain a
deformation vector field from the image sequence at a high
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frequency. This algorithm was first introduced to be used in
vision-based tactile sensing by Sferrazza et al. in [24]. The
algorithm yields optical flow Us by finding a warping vector
u = (u, v) for each template patch T in reference image Ir,
which minimizes the difference between patches in reference
image and query image.

u = argminu′

∑
x

[It(x + u′)− T (x)]2 (1)

where x = (x, y)T is the center of patch T in image Ir,
which in our case is the initial static frame of pattern, and
It(x + u′) is the best matched sub-window of T(x) in query
image It, which in our case, is the frame at time t.

Us is iteratively generated from the coarsest level (with
largest patch size) to the finest level (with smallest patch
size). And in each iteration, the quality of optical flow
is improved by Variational Refinement. Given the vector
field, vectors with magnitudes larger than zero represent
the displacement of the pattern, which is used to infer
the deformation of elastomer. A brief demonstration of the
output of DIS optical flow is shown in Fig. 3. The tactile
sensor is put on a ground plate with an adjustable tilting
angle from -20 degrees to +30 degrees. The displacement
vector field of pixels is computed with respect to the image
without contact as a reference frame.

Pose estimation with neural network The dense dis-
placement vector fields are fed to a convolutional neural
network to estimate the pose of the foot and the ground
(shown in Fig. 4(b)). The adoption of the deep neural net-
work is due to the high resolution of the input displacement
field, which makes model-based methods intractable. With a
proper scaling factor of the tactile image, the network can
be simple on structure (shown in Fig. 4(a)) while sufficiently
capable for the extraction purpose, which makes the training
process relatively easy and quick. The dimension of the input
vector field is 214×182×2. All convolutional layers have a
stride of 1 without any padding. The activation functions are
Rectified Linear Unit (ReLU).

C. Single Robot Leg

As shown in Fig. 1, we build up a single robot leg
testing platform. It is used to evaluate the performance of
the specially designed vision-based tactile sensor in assisting
controlled stabilizing tasks to maintain a balanced state of the
robot. Particularly, a 22-centimeter-long plastic tube with a
counterweight of 40 grams on its top is connected to the
tactile sensing footplate through the ankle joint. The ankle
joint is then mounted on the support platform mentioned in
section III-A, and it is driven by a servo motor to rotate at
the pitching angle. The motor is controlled by a Raspberry
Pi 4 Model B through a GPIO port using a PWM signal.

In experiments, when actuated the leg is able to rotate
forward/backward around the joint in ±45 degree, along
which the center of mass (COM) of the entire leg-foot system
changes. Changes of the COM of the whole system induce
the pressure distribution and tangential dragging changes of
the sensing skin if the sensor is put on a slope as illustrated
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(a) Learning-based Tactile Processing
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Fig. 4. Pipeline of the raw image processing. (a) Learning-based tactile
processing with convolutional neural network (CNN). Some abbreviations
are used considering visualization. For example, ”3x3 conv, 64” indicates a
convolutional layer with 64 output channels and a kernel size of 3x3. And
”max pooling” represents a maximum pooling layer that subsamples the
input by its half size. ”FC, 128” represents a fully connected layer with 128
units. ”Dropout, 0.3” represents a dropout layer with 30 percent of input
units dropped randomly. (b) Illustration of physical variables. θg refers to
the intersection angle between the horizontal plane and inclined ground. θf
refers to the intersection angle between the horizontal plane and camera
frame. Two angles are usually different due to further tilting of the foot
from the supporting plane.

in Fig. 4(b). And the process deformation information of the
sensor skin reflects both the slope pose θg and the ose θf .

IV. EXPERIMENTS AND RESULTS

In this section, we demonstrate the working principle of
the tactile sensing robot foot with a prototype shown in Fig. 1
and make use of a dataset collected to train the convolutional
neural network for regression. Based on the CNN model,
pose estimation is obtained and integrated into closed-loop
control for balancing on an inclined ground. Results of
network training and feedback control are presented and
analyzed.

A. Data Collection and Network Training

In order to collect data for training, the tactile sensing
foot with an IMU (MPU9250) mounted at its front is put
on a plate (serving as the ground) with an adjustable tilting
angle (shown in Fig. 5). Then, the following procedures are
repeated.

1) Adjust tilting angle of the ground plate from −12◦

to 12◦ with 1◦ step size. Record the readings from a
digital protractor as θg .

2) Control servo motor to rotate the leg with angle θleg
from 40◦ degree to 135◦ with 5◦ step size as shown
in Fig. 5.
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MPU9250

Digital Protractor

Tilted Ground

𝜃𝑙𝑒𝑔

Fig. 5. Setup of data collection. The tactile foot is put on a ground plate.
The plate tilting angle θg is shown on digital protractor.

3) For each (θg , θleg) pair, save dense optical flow Us and
the angle of the foot measured by MPU9250 as θf . The
measurement from the MPU9250 has an error in ±0.2
degrees which basically meets the requirement.

We obtained 25× 20 = 500 data samples, of which 80%
will be used for training and 20% for evaluation. Adam
optimizer with a learning rate of 1× 10−4 and batch size of
16 is applied. The loss function is set to root-mean-square
error (RMSE). The network was trained for 100 epochs on
a laptop with an Intel Core I7-6700HQ CPU, 16GB RAM,
and an Nvidia Quadro M1000M GPU, resulting in about
45 minutes of training time using Keras framework. The
Evaluations on the training set and test set are shown in Fig.
6. We can observe that in each plot, prediction (red line)
sticks tightly with ground truth (blue line), which means the
sensor can predict angle in a static state with narrow error
bands. The RMSE is shown in Table. I, and it shows that
our sensor can use a simple network to estimate the pose of
the robot foot with low error.

TABLE I
THE RMSE CALCULATION FOR TRAINING AND TESTING DATA

RMSE(degree) θf θg
Training 0.425 0.437
Testing 0.477 0.458

B. Feedback Control of Tactile Foot System

In this experiment, we implemented real-time feedback
control based on ground pose estimation to validate the pro-
posed tactile sensor in assisting stabilization of legged robots
on the ground for balancing. Specifically, two experiments
were conducted including a balancing task under a quasi-
static process and a comparison between systems with our
tactile sensor and conventional IMU sensors.

For the first experiment, we aim to balance the robot
by rotating its leg with respect to its ankle joint as the
slope of the ground changes in a quasi-static motion, during
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Fig. 6. Prediction of θg and θf on test set and training set. The negative
value indicates tilting forward and positive value indicates tilting backward.

which the location of the robot’s center of mass (COM)
governs the system stability. When being standstill, the robot
is in balanced state thanks to the symmetric structure of
the bottom part and the counterweights. Then, to ensure the
projection of COM from top view remains inside the contact
area of foot and terrain, the angle between the foot plate and
leg should be adjusted in reaction to the change of the ground
plate angle. With feedback signals predicted by tactile sensor,
θ̂g and θ̂f , a desired motor angle φctrl (shown in Fig. 8), can
be calculated as:

φctrl = arccos(
l cos(θ̂g − θ̂f )

L
) +

π

2
− θ̂g, (2)

where L is the length of the leg and l is the distance between
the output shaft of the motor and the perpendicular bisector
of the supporting platform. The motor is controlled by a 50
Hz PWM signal, with the formula of duty cycle, D, shown
as:

D = K0 × (
φctrl
K1

−K2 ×
dφctrl
dt

+K3), (3)

where K0 = 0.01, K1 = 28.8, K2 = 0.03 and K3 = 2.5 are
fine-tuned controller’s coefficients.

To evaluate the system performance quantitatively, we
measure the angle of foot θf from the IMU and the ground
plate θg from the digital protractor to obtain φref with Eq.
2. And we want the angle of servo motor φctrl to follow
the reference angle φref , where the evaluation criteria are
the error between φref and φctrl. As shown in Fig. 8, four
ground plate tilting operations are carried out in sequence,
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Fig. 7. Result of pose regulation to minimize the error between φctrl and
φref . Four control stages of the ankle joint’s angle corresponding to Fig.
8 are marked out.

Fig. 8. Demonstration of the balancing task. Angle φctrl shown in the
first image is defined as the intersection angle between the foot plate and
the leg. Four stages of plate tilting operations are: 1) Tilting the ground
plate to +9 degree; 2) Tilting the plate back to horizontal; 3) Tilting the
plate to −9.5 degree; 4) Tilting the plate to horizontal.

while the robot leg applying the control in Eq. 3 to keep
the system balanced. Results of this task in Fig. 7 show
that φctrl tightly follows the desired angle φref , which
yields a low RMSE of 0.86 (degrees). This indicates that
from a control perspective, the system response to input is
satisfactory in terms of accuracy and response time. Also
from the inspection of system feedback performance in each
image of Fig 8, we can directly observe that the whole
system can maintain stability during the process with little
oscillation.

In the second experiment, we consider the scenario where
a legged robot lifts and puts down its legs to complete a
walking gait. Under such specific setup, we qualitatively
compare the performance of a sensor with a conventional
sensor in providing necessary signals for feedback control of
the robot’s leg (shown in Fig. 9). Although both can measure
tilting of the foot and use it as input for motor angle control,
tactile sensor, being able to estimate contact information,
triggers actuation only when contact occurs (Fig. 9(a.1)).
When the leg is lifted above the ground plate, the tactile
skin has no deformation due to the non-contact state. Then
the motor is deactivated from adjusting the leg angle (Fig.
9(a.2)). The motor is only activated when the foot goes back
onto the ground plate. With deformation detected, ground

Fig. 9. Comparison between system sensor configurations with tactile foot
and IMU sensor in pose regulation tasks.

plate tilting angle can be predicted for feedback control again
(Fig. 9(a.3), (a.4)). On the other hand, the IMU sensor, as
it cannot distinguish contact from the non-contact condition,
will continuously try to manipulate the joint angle even when
no contact is made(Fig. 9(b.1), (b.2)). This will eventually
lead to the motor rotating to a dead zone (Fig. 9(b.3)) and
failing to adapt to the original ground plate (Fig. 9(b.4)).

In addition, an alternative method might be to place an
IMU on the leg of the foot system, so that the leg can be fixed
at an absolute angle with respect to the earth’s ground all the
time. However, this approach fails when the foot is lifted up
and then in contact with the ground plate at a different angle
(Fig. 9(d.1)-(d.3)). Because the foot remains at a tilting angle
which only fits the previous ground plate condition. When
it contacts the ground plate with a new angle, the system
loses its stability (Fig. 9(d.4)). But tactile sensing foot can
solve this problem easily as both ground plate angle and foot
angle are jointly estimated for control purpose (Fig. 9(c.1)-
(c.4)). The two cases demonstrate that tactile sensors can
maintain functioning in tasks where traditional configurations
with IMU sensors fail.

V. CONCLUSION

In this work, we develop a single robot leg augmented
by a high-resolution vision-based tactile sensor with a novel
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feature extraction framework. The tactile sensor features a
simple structure, easy fabrication, and reliable durability. An
image processing pipeline is implemented to identify degrees
of deformation and extract meaningful contact information.
A convolutional neural network is utilized to process the
tactile signal, from which estimation of ground slope and
tilting of the foot can be obtained and evaluated. The sensor
hardware and software integration enables tactile perception
on robot feet. Evaluation experiments demonstrate the robot’s
capability to provide feedback control when interacting with
the environment. Specifically, ground sloped estimation and
active balancing control experiments are presented. Then the
tactile sensing foot is compared with system configuration
using only IMU sensors. Experimental results reflect the
merits of the sensor designed in providing richer and more
complete information solely from contact deformation of foot
skin of legged robots for locomotion tasks.
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