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Abstract— Endowing artificial sense of touch comparable
to human’s has been challenging, yet significant to enabling
adaptive and collaborative interaction in contact-rich tasks.
This work is dedicated to proposing a novel vision-based
tactile sensor augmented robot arm (VTacArm) design with
full surface coverage and developing algorithms to retrieve
contact information which is essential for down-stream feed-
back control. We first introduce the robot arm design and
its accompanying fabrication process. Then, to convert the
contact signals in the image space to the arm coordinate
system, a calibration procedure and method are proposed.
Finally, the tactile robot arm and the contact information
extraction algorithm are integrated into a control system for
collaborative interaction tasks. Bumping detection/reaction and
contact motion following experiments are presented to justify
that the designed tactile robot arm and proposed contact
sensing method are beneficial and give robot capabilities to
adapt to human contacts, which is vital for workers’ safety.
Our work can be informative for developing novel full-body
vision-based tactile sensing on robots as a new concept with
significantly lower cost and manageable fabrication complexity.

I. INTRODUCTION

Tactile sensing has been investigated and proven to play
critical roles in human interaction with the environment.
For robotic systems, artificial skin that enables robots to
feel and react to physical contact is attracting more and
more attention and becomes an inevitable demand as robots
come increasingly close contact with people. Manufacturers
worldwide use a growing ratio of industrial robots to human
workers to perform collaborations in a contact-rich fashion
in recent years. In consequence, safe interaction emerges as a
major concern. By detecting and regulating the contact force,
robots with artificial skin can achieve tasks without dealing
damage to objects and human workers.

However, for most current robots, the sense of touch is
absent and underdeveloped in two levels. First, the conven-
tional tactile sensor is too expensive to be fully deployed onto
robot systems due to the complex fabrication processes and
clumsy signal acquisition systems developed for the tactile
sensors [1]. Although a full-body tactile sensing system [2]
is very appealing due to its perception ability to external
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Fig. 1. VTacArm robot arm design skematic. (a). Rendered 3D model (in
a cutaway view). (b). VTacArm sensor prototype. (c). A robot arm consists
of three VTacArm sensors (rendered by software)

environment surrounding the robot, this scale of skin can
be much more expensive than the robot arm itself and
probably leads to tedious fabrication and being break-down
prone. Besides, signal processing and inference based on
electronic readings to physical contact information can be
very computational demanding for large amount of tactile
sensor units on a robotic system. Second, most tactile sensors
fabricated in the past lacked multidimensional deformation
sensing capability. For example, sensors with capacitive,
piezoelectric or piezoresistive transducing interfaces usually
can only respond to normal pressing, but not to tangential
dragging, which is, in contrast, common for human skin.
Therefore, a low-cost, multidimensional appreciable, full-
body deployable, computational efficient artificial skin is
crucial for bringing robots closer to human working space.

Recently, as an advance on tactile sensor technologies,
vision-based tactile sensors have been emerging in various
robotic systems with advantages of easy fabrication, high
resolution, and multi-axial deformation sensing capability,
e.g. Gelforce [3], FingerVision [4], Gelsight [5] and a com-
pact version called Gelslim in [6]. Algorithms for inferencing
contact information are developed in multiple levels such as
contact detection, force sensing [7] and contact events detec-
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tion and prediction [8]. These applications of vision-based
sensors demonstrated the superiority as sensor units on end-
effectors mainly for object manipulation. Attaching robot
arm with vision-based sensors is unexplored previously. In
this work, we expand the application of the vision-based
tactile sensor to a full-body skin robot system by proposing
novel sensor design called VTacArm and accompanying
contact information acquisition method to reflect that the
vision-based sensor is of potential to cover the range of
human sense of touch on body surface beyond fingertips.

As shown in Fig. 1, the VTacArm design is composed of
two major components: torus-shape elastomer layer as skin
and camera installed at one end as the transduction interface.
Dot grid pattern is attached on the outer surface of the clear
gel layer as the tracking target. Once external force is applied
onto the skin, the elastomer deforms accordingly following
continuum mechanics and the displacements of dots are
captured by the monitoring camera to obtain a deformation
field. Afterwards, the deformation field in the image domain
is further back projected to the sensor coordinate frame via
the calibrated projection matrix and sensor model in order
to facilitate correct regulation to the force stimuli.

The proposed tactile augmented robotic arm features mul-
tidimensional force sensing, which provides necessary input
to various tasks in human-robot interaction. There are two
important tasks in contact-rich human-robot interaction: 1)
bumping detection/reaction; 2) contact motion following.
Bumping detection/reaction involves contact detection and
sending command afterwards to the robot to stop motion or
retract. In the task of contact motion following, human co-
worker grab and hold a certain part of the robot and exert
force aiming to transform the robot between configurations,
mimicking an adult human teaching a child handwriting
by holding the child’s hand. In our paper, with the touch
sensation acquired from the VTacArm, our robot adapts to
the contact made by human worker tasked with specific
human-robot interaction goals.

This work contributes in mainly two perspectives:

• Presenting a novel robotic arm design fully covered with
vision-based tactile sensing skin and demonstrating the
feasibility of the full-body contact information acquisi-
tion and extraction.

• Developing calibration process and devising neces-
sary calibration instruments. Integrating the design sen-
sor and contact information extraction algorithm into
human-robot interaction tasks.

The paper is structured as follows. Section II introduces
previous works related to to robotic full-body skin, vision-
based tactile sensors and human-robot interaction. In section
III, we extensively describe the design and fabrication of
the sensor proposed and method to transform image signal
to contact information. In section IV, experiments including
calibration evaluation and two human-robot interaction tasks
are elaborated and analyzed. In section V, conclusion are
drawn finally.

II. RELATED WORKS

A. Whole-body Artificial Skin
Human body has tactile sensation distributed with varying

density, achieving trade-off between functional effectiveness
and energy/attention efficiency [9]. So, for robotic system,
artificial skin is not just a patch of sensing matrix with
high resolution, but a highly distributed sensor system [1][2].
There are few cases of the realization of whole-body artifi-
cial skin to application level. M. Toshiharu et al. in [10]
implemented normal force sensing units on a nursing robot’s
body and arms for tasks like hugging and lifting of humans
reactively. I. Kumagai et al. in [11] presented a full-body
multi-axis tactile sensor suit for a humanoid robot to detect
contact states in an object receiving and releasing tasks
collaborated with human. Beyond the normal force sensing,
the sensor developed in this work provides tangential force
sensation. These two works installed standalone sensor units
onto robots’ surfaces with different spacing at different
positions. And Each sensor unit was powered and signal
was acquired separately, which would be challenging if the
density of sensors were to be increased.

There are previous works emphasizing on conformation of
sensors onto robots’ body surface, as human skin does. Y.
Ohamura and Y. Kuniyoshi in [12] introduced a humanoid
with whole body tactile sensing capability to manipulate
heavy objects or human-shape objects. The sensors used in
their work are printable on compliant sheet and could be ”cut
and paste” to robot body surface conveniently. Besides, the
sensor patches were connected serially, which alleviates the
burden of power wiring and signal multiplexing. Advancing
on systematic approach to realize whole-body tactile sensing
on robots in both sensor capabilities and algorithms to
process numerous units efficiently, P. Mittendorfer et al.
[2] developed a humanoid robotic system covered with
multi-modal tactile cells connected with revolute joints to
retain compliance. And event-based control framework used
reduced the frequency required for reading processing and
response.

The previous attempts to construct whole-body artificial
skin generally suffered from one of these drawbacks if not
all: lower density, high data processing bandwidth require-
ments and complex power wiring and signal multiplexing.
In our work, we design a robot arm skin using only one
camera provide robot with sensation of multidimensional
contact force. Our design is superior in both fabrication and
signaling.

B. Vision-based Tactile Sensors
Vision-based tactile sensors are gaining more and more

attention for its superior tactile resolution, easy fabrication,
robust electronics, compact form-factor and simple mul-
tiplexing peripherals. In the perspective of the versatility
in feature extraction operation in different levels, vision-
based tactile sensor is capable of acquiring multi-modal
contact information including deformation [4], texture [13]–
[15], contact area localization [6][16], geometry reconstruc-
tion [13][17] and force estimation [3][4][17][18][7]. Beyond
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these low-level contact information, vision-based tactile sen-
sors have been performing effectively in high-level tasks
like object recognition [15], localization of dynamic object
[19], simultaneous localization and mapping of the sensor on
objects [20], slip detection [5][21][14][22] and a fine-grained
contact events classification [8].

Most of the previous implemented vision-based tactile
sensors are targeting at resolving contact signals at fingertips
[3][8][15][23]. However, there exists other forms of vision-
based tactile sensors. L. Cramphorn et al. in [24] fabricated a
dome-shape tactile sensor called TacTip that was installed as
an end effector on a manipulator. Similarly, B. W. McInroe
et al. [18] presented an arm tip with integrated tactile sensing
and pneumatic actuation. Tactile sensors on fingertips or on
arm tips are unable to cover sufficiently large body area
that is preferred by agile adaptation to external contacts in
human-robot interaction tasks. In this work, we show that a
skin covering a whole arm can also be realized using vision-
based tactile sensor with a novel design and proper signal
processing.

C. Contact-rich Human-robot Interaction

To ensure safety during human-robot interaction, apart
from artificial skin, adaptation policies of robot actions are
essential. In [2], the robot armored with whole-body tactile
sensors executed configuration transformation following the
trajectory generator’s commands and adjusted simultane-
ously by tactile events including approach, contact, load and
pull states. G. Cannata et al. in [25] devised a control strategy
to maintain contact made by human so as to following
the trajectories of contact points. J. M. Romano et al. [26]
were inspired by human control scheme of tactile sensation
and proposed method to process artificial tactile information
to generate action primitives during a manipulation action.
In our work, we design simple human-robot interaction
tasks including bumping detection and motion following to
demonstrate the agility advantage in terms of due to the dense
and multi-axial tactile information provided by the VTacArm
sensor.

III. SYSTEM AND METHODS

In this section, a detailed description of the sensor design,
fabrication process and processing algorithms to retrieve
useful contact information are elaborated. As illustrated in
Fig. 1, the VTacArm sensor is composed of soft skin em-
bedded with marker array, webcam module for monitoring,
and peripheral illumination components and housing parts
for convenient mounting. Each VTacArm sensor section can
measure contact information individually. And if they are
connected like (c), a robot arm with full-body vision-based
tactile sensing is achieved.

The principle of the sensor is straightforward. Once the
skin makes contact with external objects and deforms, the
camera captures the changed image of the marker array.
The image of the marker array is processed through marker
localization and the positions of markers are associated by a
tracking algorithm to obtain the spatiotemporal deformation

Fig. 2. Sensor fabrication process. (a). An acrylic tube is cut into desired
length. (b). Proper amount of silicone rubber solvent is poured into a mold
to form a elastomer layer with uniform thickness around the acrylic tube.
(c). A patterned sticker is adhered onto the rubber surface (d). Mixture
of silver pigment is sprayed onto the sticker layer and baked till dry. (e).
Another silicone rubber is coated on pigment layer and cured. (f). Camera,
LED, tube with skin are assembled.

field of the skin surface. More specifications will be detailed
in the following subsections.

A. Sensor Fabrication

Fabrication of the tactile robot arm takes account of
various aspects. First, the camera’s field of view (FOV) is
required to cover the large area of an 100mm-long tubular
elastomer with radius of 25mm from the interior of the
acrylic tube. We chose Raspberry Pi Camera Module v2
with a fisheye lens, which has a FOV of 160 degree and
an adjustable focal length. The camera is installed at one
end of a transparent acrylic tube, with length of 175mm,
outer diameter of 50 mm and thickness of 4 mm, so that
the strength of the sensor’s main body to withstand external
impact is guaranteed.

The medium of deformation in this sensor is a transparent,
hyperelastic and durable silicone rubber (shore hardness of
20A close to the hardness of human skin). The solvents of
two-part silicone rubber are mixed in an 1 : 1 ratio and
cured in a two-piece mold for casting. After formed, an
elastomer layer is adhered firmly onto the outer surface of
the acrylic tube and serves as the deformation interfacing
substrate. In order to acquire the deformation of the skin, a
thin patterned sticker is adhered onto the surface of elastomer
layer. This sticker with marker array is printable on a thin
flexible adhesive film by laser jet printers. Being both trade-
off problems, the density of the markers are chosen as high
as possible while constrained by tracking error rate, and the
marker size is the smaller the better while constrained by the
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Fig. 3. Results generated from the image processing pipeline. (1). Optical
flow obtain from DIS on image sequence (image cropped to zoom in). (2).
Image obtained from maximum filter. (3). Patch contour identification. (4).
Contact Patch center localization.

marker localization inaccuracy. Therefore, the marker density
and size need to be settled empirically in experiments. A
thin frosted paint layer made of limonene, silicone and
silver pigment is sprayed on the patterned sticker. It isolates
potential disturbing lights, blocks background scenes and
also disperse lights from the LEDs to form a relatively more
uniform illumination inside the internal of the sensor. A more
durable silicone rubber is coated as the outermost layer to
reinforce the sensor.

Since the sensor is fully covered with opaque material,
proper illumination is necessary. 8 LEDs are mounted on
both side of the tube. A semi-transparent frosted plastic plate
is placed in front of each LED to generate a more diffused
light inside the tube. Two 3D printed parts are used to fix the
tube, LEDs and camera and provide coupling mount to the
robot arm. The whole schematic procedures of the fabrication
are shown in Fig. 2.

B. Extraction of Contact Information

The main functionality of the VTacArm is to retrieve de-
formation on the cylindrical elastomer surface when making
contact with objects, from which useful features, i.e. contours
and centers of contact patches can be extracted for down-
stream applications. Fig. 3 shows the pipeline of processing
raw images to acquire contact information. Images sequence
is captured by the camera at a rate of 40 fps with an initial
resolution of 1640 × 1232. A mask is superimposed to the
image, trimming out the region of interests (ROI). Then
the masked image is resized to 512 × 288 to increases the
computation speed while still preserving a decent accuracy
of contact patch estimation.

Fast Optical Flow with Dense Inverse Search (DIS) We
utilize dense inverse search (DIS) optical flow algorithm [27]
featuring more efficient computation to obtain a deformation
vector field from the image sequence at a higher frequency.
The algorithm yields optical flow Us by finding a warping
vector u = (u, v) for each template patch T in reference
image It, which minimize the difference between patches in

Fig. 4. The perspective projection schematic diagram of the sensor imaging
and back projection of point and vector from image domain.

reference image and query image.

u = argminu′

∑
x

[It+1(x + u′)− T (x)]2 (1)

where x = (x, y)T is the center of patch T in image It,
which in our case is the initial static frame of pattern, and
It+1(x+u′) is the best matched sub-window of T(x) in query
image It+1, which in our case, is the nth frame.

Us is iteratively generated from coarsest level (with largest
patch size) to finest level (with smallest patch size). And
in each iteration, the quality of optical flow is improved
by Variational Refinement. Given the vector field, vector
magnitudes larger than zero represent the displacement of
pattern, which are used to infer the deformation of elastomer.

Contact Identification and Center Localization This
part involves multiple image processing methods. To estimate
the contact patches, the deformation field is first thresholded
with a hand-picked magnitude value to filter out noises that
can stem from lighting reflection, imaging process factors
and etc. Then we apply a maximum filter to dilate the
value of local maxima of vector magnitude into its neighbors
to compensate loss of contact area due to the previous
thresholding operation and then binarize the deformation
field image with regions of ones denoting active contact
patches and regions of zeros denoting non-contact area. Next,
a contour finder marks the boundary of contact areas. After
the contact patches are identified, the geometric center is
obtained by averaging the locations of all the points inside
an active contact patch.

Calibration of Contact Points It is needed to project
center of contact patches pc = (xc, yc)

T on image domain
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Fig. 5. Experimental setup of the data collection for calibration. (a). Instruments for positioning the contact points. (b). Acquired contact data in image
domain (2D) and predetermined Cartesian positions on sensor surface (3D).

back to the points on the surface of the cylindrical elastomer
ps = (xs, ys, zs)

T in the sensor’s coordinate system, which is
defined as 20 mm above the center of the camera lens surface
and Y-axis flipped, to reconstruct contact in physical space.
To fulfill this goal, we propose calibration data collection
procedure as follows:

1) A 3D printed shell is fixed w.r.t the sensor and covers
the active sensing area tightly without making inter-
fering contacts. The shell has 250 holes of 4 mm
diameter with predetermined position on a grid w.r.t Cs

as ph = (xh, yh, zh)
T on its wall. The instruments are

given in Fig. 5(a).
2) A stick with 3.8mm diameter probes the sensor surface

through the holes one by one in order. Each time, the
contact point ps on the sensing surface is calculated
based on ph (there is a small gap between the shell
inner surface and the sensor’s outer surface):

ps =

k 0 0
0 k 0
0 0 1

 · ph, (2)

where k = 0.97 is the ratio between the inner diameter
of the shell and the outer diameter of the elastomer
layer.

Using this dataset collected, we build up the correspon-
dence between points in image domain and points in 3D
sensor surface, shown in Fig. 5(b). Fig. 4 illustrates the
perspective projection with additional cylindrical constraint
in the camera system. Given a set of 2D-3D point corre-
spondences (e.g. pc − ps), the projection matrix that maps
points in 3D space onto 2D image domain is formulated as
the equation below [28].

xy
z

 = Rps − C̃ (3)

x′ = x/z

y′ = y/z
(4)

x′′ = x′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′y′ + p2(r
2 + 2x′2)

y′′ = y′
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
+ p1(r

2 + 2y′2) + 2p2x
′y′

(5)

where
r2 = x′2 + y′2.

Finally [
pc

1

]
= K

x′′y′′
1

 (6)

where K, R and C̃ represent 3 × 3 camera calibration
matrix, 3 × 3 rotation matrix of the camera coordinate
Oc and the coordinate of camera center (3 × 1) w.r.t. the
sensor coordinate frame, respectively. Here we model the
lens distortion using rational model provided in [29], which
includes 8 distortion parameters. With redundant point pairs
provided, K, R, C̃ and 8 distortion parameters can be solved
using Direct Linear Transformation (DLT) [28]. As shown in
Fig. 4, when the sensor is used in experiments, points and
vectors in image domain are supposed to be back projected to
be points and vectors on the cylindrical surface. The function
of the cylindrical surface is formulated as a constraint of x
and y coordinate values in coordinate frame Os, which is
determined by matrix R and C̃.

To map a vector that represents the surface stress or
total force in a contact patch, we first construct a vertical
tangential plane (in purple in Fig. 4) at the back projected
point ps of the vector’s start point pc in the image domain,
formulated as psxx+ psyy = p2sx+ p2sy . Considering vectors
on the image plane all correspond to tangential vectors on
the sensor surface, the end point such as p′c is back projected
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Fig. 6. The forward and backward projection error of individual data points
that we used for calibration. They are both normalized and plotted using
the same color map.

as a ray and the ray intersects with the tangential plane to
obtain the corresponding vector’s end point p′tp in 3d space,
as sketched in Fig. 4.

IV. EXPERIMENTS AND RESULTS

In this section, we demonstrate the principle of VTacArm
by using one sensing section and present the utilization of
the dataset obtained from the calibration experiments in the
computation of the projection matrix of the imaging system
in a quantitative way. Based on the back projection of points
and vectors in image domain, the contact patches and contact
stress vectors can be mapped onto the sensor surface for both
visualization and down-stream adaptive control during the
interaction between human and robot.

A. Camera Calibration and Evaluation

In the process we described in section III-B, there are
a total of 250 candidate point-pairs that can be utilized for
camera calibration. Compared to the 11 unknown parameters
in the calibration matrix (5 for intrinsic parameters, 3 for
rotation and 3 for translation), this is an over-determined
system. Moreover, in the dataset there might exist outliers
that cannot reflect the true projection relationship accurately.
Instead of using sampling based methods like RANSAC, we
consider a simpler procedure for outlier removal. First, we

Fig. 7. Visualization of contact contours and contact displacement vector
during a contact session. Real contact at the top row and simulated
visualizations at the bottom row. (a). Contact contour at the start. The red
vector is the contour displacement vector of last contact session. (b). Contour
at the end and contact displacement vector. (c). Multiple contact patches.

perform the aforementioned calibration process over the full
dataset containing 250 data pairs. Then we use the obtained
calibration result to back project the 2D image points into
the 3D space. Compared with ground truth 3D locations, we
remove all point pairs exceeding the 2mm error threshold.
131 points are removed and 119 points remain. Finally,
we reiterate the calibration process with the remaining data
points. With the obtained calibration matrix, we achieved an
average error of 3.65 pixels from 3D to 2D, and an average
of 1.20mm from 2D to 3D. The point locations and their
corresponding errors are shown in Fig. 6. Note that these
points are filtered by the outlier removal procedure. For
the case of 3D to 2D, when the point is further away, its
projection on the image is more accurate because it tends to
accumulate around the center of the image. For 2D to 3D,
it’s the opposite. Inaccuracy in the measurement of pixel
coordinate will cause a drastic change in the 3D location for
points closer to the center of the image. For our application
our main interest is in projecting image points to 3D world,
and this error plot indicates our working range should be
focused on the lower part of the arm (closer to the camera).
How to enlarge the working range to cover higher parts of
the arm might be an interesting future work.

B. Contact Information Visualization

Before integrating the sensor and contact information
extraction unit into actual feedback control loop, we first
visualize the contact information to show the benefit by using
the sensor as one section of a robot arm during interaction.
As captured in Fig. 7, the tactile sensor is mounted onto
a UR robot arm’s end flange. An human operator place a
finger on the sensor sensing surface and then move the finger
relative to the sensor surface without losing contact, shown
in Fig. 7(ab). The visualized contours (in green color) are
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Fig. 8. Bumping detection/reaction and motion following experiments.
Motions of the robot arm are drawn with arrows. (a). Bumping detected
and the robot arm retrieves to avoid being damaged. (b). Fingertip contacts
the sensor surface and drive around a horizontal curve. s: start, e: end. (c).
The robot arm responses with rotation. (d). Fingertip contacts the sensor
surface and drives vertically across a track. (e). The robot arm responses
with a vertical translation.

illustrated in a real-time updated interface (via RViz and
ROS) in the bottom row of Fig. 7(ab). When a contact
and moving period is over, a vector (in red color) denoting
the contour center displacement is rendered on the sensor
surface in the simulated interface Fig. 7(b). The sensor is also
capable of detecting multiple contacts and projecting contacts
in image domain to the sensor surface. As given in Fig. 7(c),
the human operator makes contact with the sensor surface at
two contact sites, simultaneously, the contours are shown on
the sensor surface. Via the experimental results, it is clear
that the visualization resolution obtained with our sensor is
much higher compared with flexible sleeves embedded with
electric-transduction based tactile sensors.

C. Adaptation in Interaction Experiments

In this experiment, two sub-experiments showing human-
like behaviors that are desired in human-robot interaction
(HRI) tasks will be implemented: bumping detection/reaction
and contact motion following.

For bumping detection and reaction experiment, a human
operator pokes the sensor surface with a screwdriver at
a contact point as shown in Fig. 8(a). Then the contact
position is detected by contact patch identification module.
The contact point localized is back projected to the sensor
surface for calculation of the retrieving vector that points
to the direction of the robot arm motion. For demonstration
purpose, the retrieving vector is simply the inverse normal

vector at the contact point passing through the axis of the
cylinder. As illustrated in Fig. 8(a), after the poking, the robot
instantly move in the direction of the poking to avoid further
poking which might cause damage to the sensor, mimicking
a natural action human might take after receiving contact
capable of causing harm.

In the experiment of motion following at contact point,
a human operator makes contact with the sensor’s surface
and drives certain motion for the robot arm to follow. In
Fig. 8(bc), when a surface traction with a moment w.r.t.
the cylinder axis is applied, the robot arm rotate along the
cylinder axis by an angle determined by the contact patch
displacement from the start site to the end site. In Fig.8(de),
the human operator move above the sensor surface along
the cylinder axis without exerting moment, the robot arm
response with a pure translation along the cylinder axis. The
covered distance equals to the displacement of contact patch
from the start to the end. From these two experiments, we
successfully code the robot arm to behave like a human
given different interaction tasks including damage avoiding
and drag following. Furthermore, these interactions can be
triggered at any location on the sensor surface, which is
superior compared tactile array on robot arm with much
lower density.

V. CONCLUSION

In this work, we develop a full body vision-based tactile
sensing augmented robot arm section called VTacArm with a
novel imaging system. The sensor features easy fabrication,
simple multiplexing and multi-axial deformation sensing. To
extract contact information, we develop a pipeline of image
processing to not only identify contact patches but also local-
ize the contact sites and degrees of deformation. We devise a
system with unique instruments and method to calibrate the
sensor, from which sensor model is estimated and further
utilized to back project contact features in the image domain
to the sensor coordinate frame. After integrating the sensor
and contact information extraction modules, experiments that
showcasing the robot’s capability to mimic human actions
when interacting with environment are implemented. Specif-
ically, bumping detection and reaction, motion following at
contact sites are presented. Experimental results reflects the
merits of the sensor designed including better resolution,
multi-axial sensing ability, larger sensible area, pushing full-
body tactile sensing one step forward.
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