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Abstract— Perceiving the dynamical environment both visu-
ally and tactilely is crucial for the survival of animals, and
therefore, is considered of importance in robotics research.
Recently, there has been an increasing interest in vision-based
tactile sensors due to their high sensing resolution and robust-
ness to environmental changes. However, almost all vision-based
tactile sensors make only partial use of the camera, specifically,
only when contact occurs, and stay idle at other times, which
results in a waste of the camera information bandwidth. In
this paper, we propose a new visual-tactile dual-modality sensor
called SpecTac, which can visually inspect the environment and
make tactile observations. The main novelty of the sensor is
the use of ultraviolet (UV) LEDs and randomly distributed UV
fluorescent markers. When the LEDs are on, those markers will
be bright and can easily be distinguished and tracked from the
background. Besides, by controlling the on and off of the UV
LEDs, due to the switchable visibility of those markers, the
sensor will switch between visual and tactile sensing mode.
The qualities of tactile and visual perception are evaluated
quantitatively by force estimation, visual triangulation and
visual feature matching. By combining both modalities into
one compact sensor, the information from the camera is better
utilized, and it is hoped that the sensor will achieve more
flexibility in the motion of the robot arm, especially in tasks
where the workspace is narrow.

I. INTRODUCTION
For autonomous robots, it is critical to perceive dynamic

environments and make appropriate responses. By vision-
guided motion and tactile-based control, robots can track
moving objects [1] and avoid grasp failure [2]. Furthermore,
the fusion of vision and touch can enable robots to complete
more complex and dexterous manipulations.

Visual perception based on cameras plays a crucial role in
robotic manipulation tasks. It is difficult for robots without
cameras to localize objects and track them in closed-loop
manipulation. However, self-occlusion can sometimes be a
problem with a single camera. Multiple cameras can also
work in a cooperation scheme for manipulation: the fixed
camera localizes objects in the environment and observes the
scene, while the movable camera tracks the objects relative to
the end effector [3]. Increasing the visual perception sensors
can help to do more dexterous manipulation tasks.

Recently, vision-based tactile sensors using digital imaging
through a transparent gel have been developed, such as
GelSight [4], GelSlim [5], and Digit [6]. These sensors
have achieved outstanding sensing resolution and robustness
to the environment. They can reconstruct force information
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Fig. 1. (a) Schematics of the design for the visual-tactile dual-modality
sensor. The appearance (b) without LEDs and (c) with LEDs lit up.

with a camera from marker motion and photometric stereo,
which can increase the flexibility and robustness of dexterous
manipulations [7], [8]. However, due to the imaging used, the
cameras in the sensors are usually sealed for illumination
constancy. Hence, they only matter when contact occurs but
keep capturing the same unchanged image for the rest of
the time. The information bandwidth is therefore largely
wasted. Yamaguchi et al. [9] proposed FingerVision sensor,
which works without an opaquely coated surface. However,
the visual perception ability is limited to proximity sensing.
Abad et al. [10] introduced UV markers, but the use of those
markers is only to avoid leaving holes in the RGB image.

To tackle this problem, we present a visual-tactile dual-
modality sensor, called SpecTac, as shown in Fig. 1. There
are six main parts of the sensor: a camera, 3D-printed
support, acrylic board, cylindrical transparent gel, randomly
painted fluorescent markers on the gel, and LEDs that can
emit UV light. It has both visual and tactile modalities.
When the LEDs are off, the camera can view the scene
through the transparent gel. When the LEDs are on, the
fluorescent markers will illuminate, and thus, the camera
can capture them as bright blue dots on the image. These
dots are easy to distinguish, detect and track from the
surroundings. Therefore, by controlling the LEDs turning
off and on, the sensor can switch its modality in visual
and tactile sensing. By using a single camera through time-
division multiplexing (TDM), the SpecTac sensor integrates
the functionalities of both wrist-mounted camera and vision-
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based tactile sensor. A comparison of the SpecTac sensor
and other sensors for robotic manipulation is listed in Table.
I. It can do manipulation tasks like inspecting the scene,
localizing the target objects, and grasping dexterously using
tactile information.

This paper is structured as follows: In Sec. II, related
works about tactile sensing and visual sensing, especially
in the field of robotic manipulation are introduced. In Sec.
III, the design of the hardware and software architecture
are described in detail. In Sec. IV, normal and shear force
estimation based on the displacement of markers are used
to evaluate the tactile perception quality of the sensor. The
visual perception is evaluated by 3D triangulation, SIFT [11]
feature detection and matching. In Sec. V, a summary of the
work and future research directions are discussed.

TABLE I
THE COMPARISON OF DIFFERENT SENSORS FOR THE ABILITY OF DOING

TACTILE AND VISUAL TASK

Sensors GelSight[4], GelSlim
[5], Digit[6] FingerVision[9] Camera SpecTac

Tactile tasks ! ! # !

Visual tasks #
only proximity

sensing ! !

II. RELATED WORKS

A. Tactile Sensing and Vision-based Tactile Sensors

Tactile sensing is an essential ability for animals to
perceive and react to their environment. Therefore, it has
been studied for years in robotics research [12]. Resistive,
capacitive, and piezoelectrical transduction interfaces are
used in traditional tactile sensors. However, when the area to
be measured is large, such sensors generally suffer from sen-
sitivity to external changes (e.g., temperature fluctuations and
electrical interference) and complicated wiring due to electric
single point signals involved [13]. In recent years vision-
based tactile sensing approaches are prospering, owing to
their better sensing resolution, easy manufacturing method,
robustness in harsh settings, multi-axial measuring capability,
and simple multiplexing peripherals. Furthermore, current
developments in digital cameras not only make their appli-
cation low-cost and simple-to-use, but also synergize tactile
sensing with computer vision and deep learning, allowing the
transfer of visual perception knowledge to tactile perception.
Because of the higher resolution and distinct representation
of vision-based tactile sensors, processing algorithms for
classical tactile sensors cannot be directly transferred to
them.

Vision-based tactile sensing often uses a soft surface that is
responsive to contact. When it deforms, the change of shape
is captured by the camera in the 2D image. This idea was
first implemented by Kamiyama et al. [14] with a color CCD
camera recording the positional center of mass variation in
the markers. In the last two decades, other approaches to
solving tactile sensing have emerged. The GelSight sensor
uses photometric stereo to reconstruct the contact depth map
from three color illuminations [15]. Dot markers were later
added to the GelSight sensor to allow for measurements not

only in the normal direction but also in the shear direction
[4]. While most other methods used opaque sensing surfaces,
Yamaguchi et al. [9] chose not to cover the imaging system
completely for isolated illumination environment, but left the
silicone gel transparent to provide proximity vision ability.
GelSlim sensors use reflective mirrors [5] and a shaping
lens [16] to reduce the thickness of the tactile sensor so
that they are compact enough to be used as grippers to
squeeze between objects. OmniTact [17] uses five cameras
inside a single sensor to provide a wide field of view and
multi-directional sensing ability, which is better suited for
fingertip touch sensing. Soft-bubble grippers use an air-
inflated structure to make the contact surface more compliant
to the grasped object with a large friction force [18]. A
compact ToF (Time of Flight) depth sensor is used in soft-
bubble to enable contact shape reconstruction and object pose
estimation. The TacTip sensor [19] uses an array of pins
on the inside of the sensing surface to form a compliant
flesh-like structure, with the aim to mimic the principle of
transduction of tactile stimuli for human skin. Sferrazza et al.
[20] adopted randomly scattered particles as tracking targets
and combined dense optical flow and a neural network for
accurate force estimation. DIGIT [6] miniaturizes the form
factor of vision-based tactile sensors so as to be mountable
on a multi-fingered Allegro hand for dexterous in-hand
manipulation.

Fig. 2. Working principle for SpecTac: The left branch is for visual mode
and the right branch is for tactile mode. The sensor can switch the modes
by the on and off of UV lights.

B. Visual and Tactile Sensing for Robotic Manipulation

Visual perception is the most common modality in robotic
manipulation tasks. Researchers have utilized depth cameras
like Microsoft Kinect [21] and Intel RealSense [22], or RGB
cameras which can be either installed as stationary or on
the wrist of the robot hand [23] for a close and detailed
view. Visual perception alone can provide 3D semantic
information and an object’s position, orientation, depth, the
most basic prior knowledge a robot needs to interact with its
environment.

On the other hand, tactile sensing provides subtle but
crucial information that originates from the contact surface
which is not possible for external vision systems to capture.
Various extraction and interpretation techniques have been
developed based on extracted tactile signals, such as force
estimation [2], [20], geometry estimation [24], slip detection
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[25], predicting slip before it happens [2], grasp stability
evaluation and regrasp planning [26], [27], contact event
classification [28], and extrinsic contact sensing [29].

The tactile sensing and visual sensing modalities can
complement each other and can be connected [30]. Both
modalities combined improve grasping performance [26],
[31], [32], but more importantly, the fused information helps
robots to learn faster with fewer data required [33]. The key
observation is the different times when the two modalities
become useful. During a robotic manipulation task, the
vision gives a distant view, while the tactile sensing provides
local detail when a contact of the robot and the object
happens [34]. This inspires us to combine the two modalities
using a single camera at different times. It is hoped that
this compact design could help improve the flexibility of
dexterous manipulation and ease the process of hand-eye
calibration.

III. SYSTEM AND METHODS

In this section, we give a detailed description of the
hardware and software architecture of our proposed sensor.

Algorithm 1: Tactile Feature Extraction
Input: Initial tactile image t0,

Tactile image sequence T = {ti|i = 1, 2, ...}
Output: Tactile feature displacement grid F = {fi|i = 1, 2, ...}

1 Mask0 =Thresholding(DoG(RGB2YUV(t0)));
2 Mask0 =Morphology(Mask0);
3 P0 =Blob detection in t0 at Mask0;
4 for ti in T do
5 Maski =Thresholding(DoG(RGB2YUV(ti)));
6 Maski =Morphology(Maski);
7 P̂i =Blob detection in ti at Maski;
8 fi = [ ];
9 for pki−1 in Pi−1 do

10 n1, n2 =kNN(pki−1, P̂i) (k=2);
11 if distance(n1, pki−1)< 0.5∗distance(n2, pki−1) and

distance(n1, pki−1)< 8 then
12 pki = n1;
13 fi.append(pki − pk0 );
14 else
15 pki = pki−1;
16 end
17 end
18 fi =griddata(fi)
19 end

A. Sensor Design and Fabrication

To fabricate our SpecTac sensor, we put a piece of
Solaris™ silicone gel (about 10 mm thickness), which is
soft and transparent on top of a USB RGB camera (HBV-
1466M12 S1.0) running at 30 FPS equipped with a 160◦

wide-angle lens. Around 130 randomly distributed fluores-
cent markers are painted on the surface of the transparent
gel by hand using a small brush as tactile tracking features,
resulting in a marker density of 8.2/cm2. The markers can
be made smaller and the density can also be increased with
advanced manufacturing techniques, which is out of the
scope for proving the concept in this paper. The markers
are barely visible under natural light conditions but can emit
blue light under UV illumination. Another Solaris™ layer

about 0.5 mm thick is put on the top of the sensor surface
for protection during contact. The sensor body is 3D printed
using SLA material as the support structure for the parts.
Surrounding the gel are 10 LEDs (5 V/DC) that can emit
UV light when powered on.

The sensor is designed to have two working modes: visual
and tactile. Under visual mode, the LEDs are switched off
and the camera can see the outside world clearly through the
transparent gel. On the other hand, under the tactile mode,
the UV LEDs are powered on and the markers will be lit
up so they can be tracked using the SimpleBlobDetector in
OpenCV [35]. Moreover, some light of LEDs can be reflected
by the silicone gel-air interface, and the LEDs’ lights are
visible due to the broad spectrum. These internal reflected
lights are stable and constant, which can help to neutralize
dynamic environmental light changes and stabilize the blob
detection process. With the tracked marker motion, one can
do many different types of tactile processing including force
estimation, contact event classification, grasping evaluation
and regrasping etc., as discussed in Sec. II. An Arduino Uno
is used to turn on and off the LEDs to switch between the vi-
sual and tactile mode. The working principle is summarized
in Fig. 2.

B. Tactile Feature Extraction

Under tactile mode, the UV LEDs are powered on so the
markers are visible to the camera for contact deformation
tracking. The tactile processing consists of three parts: im-
age pre-processing, blob detection and marker displacement
extraction.

Image Pre-processing In the beginning, the camera ex-
posure value is set to −6 for constant image brightness. The
RGB images are firstly converted to the YUV color space.
Because the markers are semi-transparent, their apparent
colors are mixed with the external scene. To enhance the
tactile marker features with a specific size and color (in YUV
color space), a difference of Gaussian (DoG) filter is applied
with standard deviations of 50 and 60, respectively. Then the
locations where the YUV pixels lie within the upper bound
(23, 18, 0) and lower bound (−5, 3,−14) are selected as
the regions to look for blob markers. These masked regions
undergo morphological closing and opening operations to
close the small gaps and remove salt and pepper noise.

Blob Detection At the masked regions, the SimpleBlob-
Detector in OpenCV is used to detect the location of the fluo-
rescent markers. The blob detection parameters are optimized
manually according to the characteristics of the painted
markers for the sensor to obtain more accurate results. The
goal for pre-processing and blob detection is to maximize the
number of tactile markers detected. Some markers may not
be detected due to external light disturbance, while features
in the external environment may be mistakenly detected in
this process. Hence a way to update the displacements for the
missing markers as well as to filter out the mistaken features
that are not from the tactile markers is needed in the next
step.
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Marker Displacement Extraction In the initialization
stage, all the tactile markers need to be accurately detected
for tracking. For every new incoming frame, its detected blob
points are compared with the locations of the blob points
from the previous frame. The correspondences are estab-
lished by finding the nearest neighbors of every previously
tracked point from the newly detected points. Moreover, a
correspondence is considered valid only if the Euclidean
distance between the blob points is less than 8 pixels, and the
distance from the points to their nearest neighbors in the new
frame is less than half of the distance to their second-nearest
neighbor. If one previously tracked point fails to find a proper
match in the current image, it is temporarily disabled and
its location remains unchanged. Finally, the displacements
are calculated for all the enabled points in the current frame
compared to their initial position. For consistency of different
marker displacements at all time, the 2D displacements of
the sparse points are interpolated using griddata from scipy
package [36] into a 12× 12 regular grid.

The complete algorithm for tactile feature extraction is
summarized in Algorithm. 1. It is able to run at 30 FPS on
a personal laptop hence is fast enough to process one frame
before the next frame from the camera arrives.

Fig. 3. The state transition graph for the visual-tactile modality switching
in a typical manipulation task.

C. Modality Switching Strategy

For the visual-tactile system to function, the UV LED
lights flicker under the control of Arduino Uno so that
the sensor constantly switches between the two perception
modalities. The first step is to initialize the positions of the
markers as a reference following the process in Sec. III-
B. Before reaching the desired object, the main function of
the sensor is to observe and inspect the scene, and the UV
LEDs are powered on at a duty cycle of 0.1 seconds in every
0.2 seconds, whereas the visual perception is done in the
remaining 0.1 seconds. The choice of this particular duty
cycle is reasoned in Sec. IV-D. In the 0.1 seconds when the
LEDs are powered on, the positions of the detected markers
are compared with their initial positions. For robustness
consideration, if the average displacement of the markers
is greater than 2 pixels (which is easy to be achieved for
a real contact but not possible to result from blob tracking
error in sub-pixel accuracy), the sensor is considered to have
made contact, so the sensor enters tactile mode and focuses

on the tactile signal acquisition until the manipulation task
is finished. The modality switching strategy is shown as a
state graph in Fig. 3. A practical example can be found in
the supplementary video.

In this section, experimental details are given and results
are presented to show that the sensor can work as a tactile
sensor while in contact with an object, and as a regular
RGB camera for environment observation when no contact
is made. With the tracked marker motions, various types
of tactile sensing have been demonstrated to be efficacious
by prior research, e.g., entropy-based slip detection [2] and
learning-based contact event classification [28]. Hence, for
simplicity, we ease the experimental burden by choosing
normal and shear force estimation to evaluate the tactile
processing performance since it is the fundamental type of
tactile sensing. All the aforementioned previous works on
tactile processing are directly transferable to the SpecTac
tracked markers. For visual sensing, 3D triangulation and
SIFT matching are conducted to evaluate the visual sensing
quality. More visual perception tasks with the sensor are
possible, such as 3D reconstruction, scene segmentation etc.,
and these are left as future work.

IV. EXPERIMENTS AND RESULTS

A. Normal and Shear Force Estimation
TABLE II

FORCE ESTIMATION EVALUATION

Model Error (N) Fx (Shear) Fy (Shear) Fz (Normal)
Linear Mean 0.10 0.078 0.34

Regression Std 0.092 0.074 0.29

SVR (RBF) Mean 0.11 0.11 0.25
Std 0.16 0.15 0.32

MLP Mean 0.056 0.052 0.12
Std 0.052 0.051 0.10

The force estimation is based on a data-driven approach.
We 3D print 6 spherical indentors with radii 8 mm, 10 mm,
12 mm, 15 mm, 20 mm, 25 mm respectively to make contact
with the SpecTac sensor. The indentors are mounted on an
ATI Mini 27 Titanium F/T sensor to obtain the 3-axis force
ground truth. The SpecTac sensor is mounted on a 3-axis
linear stage to automate the data collection process, as shown
in Fig. 4(a). Each indentor makes contact at 3× 3 grid cells
distributed on the gel surface of the SpecTac sensor. At each
location, there are 5 indentation levels with 0.5 mm step size.
At each indentation level, 2 extra steps to move up, down,
left, right 0.3 and 0.6 mm are made to introduce shear force.
This results in 9 data points at each location per indentation
level. Therefore, there are in total 6×3× 3×5×9 = 2430
data points being recorded. The shear force ranges from −3
N to 3 N while the normal force ranges from 0 N to 15
N. 70% of the data are randomly selected for the training
purpose and the remaining 30% for testing. As for the
regression models, simple linear regression, SVR (support
vector regression) with RBF kernel and MLP (multilayer
perceptron) are adopted. The MLP is designed to have 4
hidden layers with 200 hidden units each. Table. II shows
the comparison of different models on the precision of force
estimation. It can be seen that the MLP model outperforms

10847

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 19,2023 at 12:15:44 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
THE AVERAGE NUMBER OF GOOD SIFT MATCHES IN EACH SCENE

Images Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8
SpecTac sensor with mask 0.66 0.66 0.74 0.75 0.77 0.72 0.69 0.70

Camera with mask 0.94 0.93 0.92 0.98 0.89 0.92 0.94 0.94
Camera without mask 1.0 (95.8) 1.0 (165.6) 1.0 (81.3) 1.0 (21.3) 1.0 (124.3) 1.0 (90.4) 1.0 (106.6) 1.0 (122.5)

the other models by a large margin. It is generally more
challenging to estimate the normal force than the shear force,
mainly due to the depth ambiguity in monocular settings. It
is worth noting that the inherent noise of the F/T sensor we
used to collect ground truth is 0.03 N for shear force and
0.06 N for normal force. Hence the force precision of the
MLP model is rather satisfactory considering the inherent
limitation in the ground truth data.

Fig. 4. (a) The experiment setup of force dataset collection.(b) The setup
of 3D triangulation. The sensor used is the SpecTac or a regular camera.
The blue circles on the top represent the Vicon cameras.

B. Visual Calibration and 3D Triangulation

Fig. 5. The absolute triangulation error (distance between estimation and
ground truth) in 3D space. The curves show the mean error of triangulation
with 2 to 8 views using random samples taken from the test dataset. The
shaded parts are above and below one standard deviation. (a) Triangulation
with the camera directly. (b) Triangulation with the SpecTac sensor and the
LEDs off.

This section illustrates the calibration process of the RGB
camera and presents a multi-view triangulation experiment to
evaluate the effectiveness of the intrinsic/extrinsic calibration
of the camera. A chessboard with 6×5 corner points (shown
in Fig. 4(b)) is used for the experiment. The spacing of the
neighboring corner points is 0.08 m. With the aim to compare
the image quality regarding camera calibration and 2D to
3D triangulation, the same process is carried out using the
SpecTac sensor (LEDs off) and the original camera. Both the
board and cameras are equipped with Vicon markers so the
3D position of the corner points and 6D pose of the Vicon
markers mounted on the camera can be accurately tracked
in the Vicon coordinate frame {v}. The camera’s external

coordinate frame {c} is represented by the Vicon markers
mounted on it. The aim of the camera calibration is to find
the geometric transformation from {c} to the image frame
{i}. With the Vicon tracking system, the transformation Tcv

from {v} to {c} is obtained directly. Each chessboard corner
point Pv in the Vicon frame can be transformed into the
camera frame by

Pc = Tcv ·Pv. (1)

Then, the aim of the camera calibration process is to find the
proper intrinsic K, extrinsic R|T and distortion parameters
such that

p = K · f(R ·Pc +T), (2)

where f(·) is the undistort function and p is the pixel
coordinate in {i}. In practice, we fix the chessboard and
move the camera so different locations of Pc are obtained.
We take 70 images with the original camera and 70 with
the SpecTac sensor (LEDs off). The images are cropped to
320×320 to the region of interest. For each group of images,
30 images are used for camera calibration and 40 images for
testing purposes. The calibration utilizes the calibrateCamera
and solvePnPRansac functions from OpenCV [35].

To test the calibration accuracy, a multi-view triangulation
experiment is conducted. The triangulation is that given K,
R, T, f(·) and multiple Tcv and p from different views,
estimating the location of Pv . For simplicity, a linear method
of triangulation is adopted by solving an SVD problem [37].
The experiment is done by drawing 2 to 8 random samples
from the test dataset, and for each number of views, 1000
triangulations are done with randomly sampled image input
to obtain the absolute triangulation error statistics. As shown
in Fig. 5, the average triangulation error stabilizes to less
than 0.01 m from 3-view triangulation and above for both
the original camera and the SpecTac sensor. The SpecTac
sensor exhibits a larger triangulation error, but the defect
is not significant. The considerable error for the 2-view
triangulation may be due to the fact that there exist some
image pairs that are taken too close to each other, resulting
in large uncertainty in the triangulation. Considering the
average distance to the chessboard is over 1.0 m and the
cheap camera module used, the 3D triangulation error is
relatively small (less than 1% at 1.0 m). Moreover, adding
the tactile layer to the camera does not introduce a significant
downgrade of the triangulation performance.

C. Visual Matching with SIFT Descriptor

In order to evaluate the visual quality of the SpecTac
sensor, a SIFT feature detection (with OpenCV default
parameters) and matching experiment is done to quantify
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Fig. 6. Example SIFT matching results with the SpecTac sensor in each scene. For most cases the number of good matches are over 50. In scene 4 the
amount of match is small due to being too simple and textureless.

Fig. 7. Consecutive image sequence when the SpecTac sensor changes modes. The horizontal axis represents the relative time stamp of every frame. The
red block indicates that the images within this region are used as tactile image; likewise, the images within the blue regions are used as visual image. The
second and fifth images are half illuminated and are abandoned in practice.

the number of good matches in image pairs captured by
the sensor in visual mode. Although the markers are semi-
transparent, the light passing through still undergoes some
distortion. Hence, the locations of the markers are masked
out in the SIFT feature detection. A separate camera in the
same pose as the sensor captures images for comparison.
We set up 8 scenes with daily objects and take 3 image
pairs in each scene using both the sensor (LEDs off) and
the camera. The average numbers of good matches in each
scene are listed in Table. III. For clearness of comparison,
the average number of matches is normalized by the number
of good matches with the unmasked camera in each scene,
while its absolute value is in the parentheses. Note that
the masked area takes 3.3% of the total image area, but
in general, masking those areas introduces a slightly larger
match decrease. Nevertheless, it is still recommended to
mask out those regions for the SpecTac sensor for better
accuracy in the matching process in case the distortion
caused by tactile features is detected as blobs. The number
of remaining matches for the SpecTac sensor after masking
is still applicable. Some example SIFT matching results of
the SpecTac sensor are shown in Fig. 6.

D. Switching Time of the Sensor

When the mode switches, due to the rolling shutter camera
and the time delay to control the LEDs, the captured images
will not be responsive instantly. Fig. 7 shows the image se-

quence when the mode switches. It can be seen that only one
image on the boundary between the two modes is half bright
and half dark, which makes the image inappropriate for either
of the two modes. Therefore, when the mode switches, there
is one image frame being dropped intentionally in order to
avoid this ambiguity. This will not influence much in the 30
FPS camera system.

V. CONCLUSION

In this work, a new visual-tactile dual-modality sensor
called SpecTac is proposed. With the use of UV fluores-
cent markers, visual and tactile perception can be done in
one compact sensor. The quantitative experiments on visual
perception show that adding the tactile layer to the original
camera does not impact the visual performance severely. The
camera still suffices to accomplish visual tasks. The detection
and tracking of markers under tactile sensing mode can be
successfully used for normal and shear force estimation. With
the tracked marker motion, many existing tactile processing
techniques are possible, which shows great potential for
visual-tactile fusion. We also propose a strategy for dynamic
modality switching specifically for the SpecTac sensor to
make maximal use of the camera information bandwidth.
Future research direction includes making the gripper design
more suitable for this kind of visual-tactile sensing and
visual-tactile cooperation in more sophisticated scenarios.
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