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Abstract— In-hand manipulation is challenging in robotics
due to the intricate contact dynamics and high degrees of
control freedom. Precise manipulation with high accuracy often
requires tactile perception, which adds further complexity to
the system. Despite the challenges in perception and control, the
rolling stick problem is an essential and practical motion prim-
itive with many demanding industrial applications. This work
aims to learn the high-resolution tactile dynamics of the rolling
stick. Specifically, we try manipulating a small stick using the
Allegro hand equipped with the Digit vision-based tactile sensor.
The learning framework includes an action filtering module,
tactile perception module, and learning with uncertainty mod-
ule, all designed to operate in low data regimes. With only 2.3%
amount of data and 5.7% model complexity of previous similar
work, our learned contact dynamics model achieves better grasp
stability, sub-millimeter precision, and promising zero-shot
generalizability across novel objects. The proposed framework
demonstrates the potential for precise in-hand manipulation
with tactile feedback on real hardware. The project source code
is available at: https://github.com/duyipai/Allegro Digit. A video
presentation is available here.

I. INTRODUCTION

In-hand manipulation is a crucial skill for humans to
manipulate objects, allowing people to utilize various tools.
Robotic in-hand manipulation will play an essential role
in extending the deployment of robots to accomplish more
complex industrial tasks. The parallel-jaw grippers can utilize
extrinsic contact [1] or dynamic manipulation [2], [3] to
regrasp an object to change its relative pose in hand, but
multiple degrees of freedom in the fingers can enable more
flexibility and precision (Fig. 1), especially in confined space.
The motion primitive of rolling a stick-like object between
two fingers can be used to tighten or loosen the screws or
change the pose of the grasped object after the initial grasp.
It can significantly improve the flexibility of robotic systems
in various settings. For example, the manipulator has to move
back and forth to adjust the pose of the in-hand cable [4], but
it is unsuitable for confined space industrial manipulation.
In that case, the in-hand adjustment becomes the optimal
motion to adopt. Although this task seems simple, it is
non-trivial to achieve which usually requires accurate tactile
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Fig. 1. The hardware setup for this work. Two fingers of the Allegro robotic
hand are used to manipulate a piece of stick. The Digit vision-based tactile
sensor on the thumb finger reads the contact state and enables manipulation
without visual feedback

feedback for high precision grasps [5]. Robotic hands’ high
degrees of freedom increase their flexibility but also induce
challenges in designing control policies. The precision re-
quirement poses difficulty to sim-to-real approaches [6] and
makes high-resolution tactile sensing indispensable. Among
various types of tactile sensors, vision-based tactile sensors
can provide superior sensing resolution at a low design and
fabrication cost [7]. Although many prior works have tried to
reduce the learning complexity of in-hand manipulation, few
have focused on capturing the fine contact dynamics within
millimeters, which is crucial for tasks requiring precise
contact control within the fingertip.

We hope to rely on high-resolution tactile feedback and
a generic robotic hand to solve the task of precisely rolling
a stick-like object, which has a potential impact on many
industrial applications. The primary contributions of this
paper include:

• A method to accurately estimate the grasping strength
and pose of stick-like objects in hand from tactile
feedback

• A framework to learn from a small amount of data while
achieving high precision in learning tactile dynamics

• A real-hardware experimental study to show the pro-
posed method can enable rolling object pose control
with submillimeter accuracy

https://github.com/duyipai/Allegro_Digit
https://youtu.be/hxzJCXeDbIo


The proposed learning framework includes action filtering,
model-based tactile signal extraction, and uncertainty-aware
dynamics learning. In addition to safely and precisely achiev-
ing the rolling stick motion, we hope to explore the potential
of learning tactile in-hand manipulation on real hardware,
which is inevitable for learning precise contact dynamics.

This paper is structured as follows. Section II reviews
related work on vision-based tactile signal processing and in-
hand manipulation. In Section III, we introduce the three es-
sential modules of the framework, each specifically designed
to facilitate efficient learning. In Section IV, quantitative
experiments are conducted to validate the accuracy of the
learned contact dynamics model, using both test data and
hardware tests. We also extend the experiments to include
novel object testing and pose control testing, demonstrating
the usefulness of the learned model for manipulating unseen
objects. Section V gives the conclusion of the work.

II. RELATED WORKS

Robotic in-hand manipulation has been considered nec-
essary due to its flexibility for various daily tasks. Early
studies rely on task-specific hardware and control algorithms
to achieve fast and accurate object manipulation [8]. In
recent years, stronger and more robust robotic hands have
been developed [9], allowing the exploration of more generic
human-like tasks. To effectively utilize the high degrees of
freedom in the place of complex contact dynamics, rein-
forcement learning approaches are becoming popular. For
example, OpenAI [10] demonstrated for the first time using
end-to-end deep-RL based method for controlling finger-
gaiting and finger-pivoting, but the training and sim-to-real
transfer are difficult to reproduce outside the lab. Therefore,
the core question in multi-finger in-hand manipulation has
been improving the sample efficiency of learning in high
dimensionality [11] to make the methods more scalable
and manageable. Chen et al. [12] studied the human hand
kinematics and dynamics constraints, which inspired novel
robotic hand hardware and algorithm design to reduce the
action complexity. Sub-optimal controllers using domain
knowledge [13] and demonstration through human hand tele-
operation [14] were also proven to be effective in improving
the sample efficiency in reinforcement learning for in-hand
manipulation. Shaw et al. [15] extracted basic manipulation
primitives from internet videos as visual, action, and physical
priors. Many techniques [16]–[18] on sim-to-real transfer
were also emerging that allow the learned models in simula-
tion to be deployed on real hardware. A problem with these
systems above is that they are designed for palm-scale in-
hand manipulation rather than fingertip-scale, and capturing
the fine contact dynamics within the fingertip has not yet
been achieved by sim-to-real. Hence, they are not unsuitable
for precise manipulation. We learn the physics model in real
life to capture the precise dynamics at the fingertips, thus
reducing the gap between learning and deployment.

High-resolution tactile sensing is desired as feedback to
control the subtle contact within the fingertips. Vision-based
tactile sensors using digital cameras to capture the sensing

surface deformation are promising as they have high sensing
resolution, easy manufacturing methods, and robustness in
harsh settings. It also synergizes tactile signal processing
with visual signal processing tools [19]. Various kinds of
vision-based tactile sensors [20]–[24] are being developed
that satisfy different needs on the tactile signal perception.
Among them, the Digit tactile sensor [25] achieved enhanced
reliability and compact design that can fit into the Allegro
hand fingertip. Lambeta et al. [25] adopted an autoencoder
structure to extract the contact center and strength for
the Digit tactile sensor in a self-supervised manner. They
achieved the manipulation of a marble ball within the two
fingertips but consumed more than 10 hours of real data.
We hope to solve the rolling stick problem, which is more
difficult than marble manipulation due to its smaller size
and less concentrated weight, in a data-efficient manner to
make learning precise contact dynamics more scalable on
real hardware.

III. METHOD DESCRIPTION

The proposed method for learning precise tactile dynamics
relies on three key components: action filtering, tactile per-
ception, and learning the dynamics model with uncertainty,
each specifically designed to enhance learning efficiency. The
whole pipeline of the learned model is shown in Fig. 2.

A. Action Filtering

This work aims to focus the effort on the part of the action
space that is more conducive to maintaining a stable grasp.
To achieve this, we reduced the 8 DoFs (degrees of freedom)
two-finger system to 7 DoFs by fixing the base joint of the
index finger. This is because simultaneously moving the base
joints of the index finger and the thumb is unnecessary for
this task. Then, we form the choice of actions by uniformly
sampling with a step size of 0.1 radians in the 7 DoFs joint
space. The actions were filtered by calculating the forward
kinematics of the fingers. Although the forward kinematics
of robotic hands are usually not as precise as robotic arms’,
mainly due to less powerful hardware, it is still a helpful tool
for in-hand manipulation to remove the irrelevant robot finger
configurations. The filtering was based on a box constraint to
make the two fingertips close to each other and an orientation
constraint to make the two fingertips roughly facing each
other. The upper and lower bounds for these two constraints
were naively adjusted by hand. Still, the method effectively
reduced the action space as most configurations did not
satisfy these two simple constraints (see Section IV-A). This
idea can be extended to use learned classifiers (filters) from
demonstrations [14] for space reduction in more complex
tasks and will be a future work.

B. Tactile Perception

The Digit tactile sensor [25] developed by Meta was
embedded into the Allegro robotic hand. The sensor captures
RGB images at a resolution of 240x320 and has a pixel
size of 0.0487mm per pixel. We considered a strategy that
exploits the contact geometry model to achieve efficient



Fig. 2. The pipeline for the tactile dynamics model. The tactile processing outputs (s, x, y,θ) represent the contact strength, contact center, and orientation.
The action sample, tactile states, and hand state are fed into multiple multilayer perceptrons to output the future tactile state distribution (parameterized
by a multivariate normal distribution). By selecting the maximum value of the contact position marginal distribution across all actions (Eq. 1), a heat map
representation can be generated to visualize the outcomes of the actions

Fig. 3. The procedure to get the contact center position and orientation

tactile perception. The pipeline is shown in Fig. 3. Different
from the method for cable manipulation [4], we adopted the
color difference of the tactile image instead of the contact
depth image for contact detection. The observation is that
thresholding on the absolute value of the difference image
is often as effective as thresholding on the contact depth for
PCA (principal component analysis). Requiring no contact
depth reconstruction also saves the calibration burden for
vision-based tactile sensors [20], which is more complicated
for the Digit sensor than the GelSight due to non-uniform
illumination in different colors across sensors. Using the

color difference might introduce drawbacks for inconsistent
contact detection at different locations on the tactile sensor,
but we did not notice a significant impact in our experiments.
The tactile perception produces four values (s, x, y, θ). s is
the mean value of the absolute image difference within the
contact area between the tactile image and the no-contact
reference image and serves as a contact strength indicator,
i.e., how strong the current contact is. We observed the
experimental statistics and chose to use a contact strength
threshold of 1.8 to distinguish a stable grasp and an unstable
one, which approximately corresponds to 0.4N normal force.



x, y and θ are the contact center and object angle calculated
with PCA.

C. The Dynamics Model

An uncertainty-aware dynamics model [26] was employed
to adapt to a low data regime and ensure a safe grasp out-
come. We chose the MLP (multilayer perceptron) structure
for its simple nature and universal fitting ability without
the need of prior knowledge of the actual physics, making
the method more generic. 16 MLPs were trained separately
under negative log-likelihood loss with independent random
initialization and shuffling. Then, their outputs were en-
sembled to obtain a single prediction and its uncertainty
(covariance) to ensure only confident actions were executed.
The contact location and orientation predictions also come
with uncertainty, making it possible to plan and control
with uncertainty for more accurate and generalizable results.
The full loss (in s, x, y, and θ) is incurred only when
the next grasp is successful (stable). When the next grasp
in the training dataset is a failed one, only the loss in
s is backpropagated. This strategy helps to preserve the
high uncertainty in the prediction of x, y, and θ when
the grasp fails and increases the system’s robustness. We
set the multilayer perceptrons to have five layers with 32
hidden units for each and use ReLU activation functions.
The dropout rate is set at 0.1. We also use 2 parameters
to represent a single rotation to facilitate learning angle
continuity [27]. The complete learned model of 16 MLPs
has only 70K parameters. Compared with the complexity by
Lambeta et al., it is an order of magnitude less than 1.2M
[25], yet achieves comparable control performance as will
be shown in Sec.IV.

IV. EXPERIMENTS AND RESULTS

A. Hardware Setup and Data Collection

With 0.1 radians sampling step size, the original 8 DoFs
joint angle action space is a vast space with around 2 billion
discrete actions. However, action filtering retained only 424
actions to avoid the two fingertips being too far away to
hold the stick in between. This indicates that action filtering
through kinematics is a simple yet effective strategy to reduce
non-feasible actions and make the data collection process
more efficient. Although some plausible actions might be
removed in this process, we will show in Sec. IV-E that
the actions are still capable of regulating the position in
the fingertips, using other possible nearby actions and the
neural network’s interpolation capability. A wooden stick
with a 2.5mm radius and 12.5cm length (shown as object
1 in Fig 4) was used to collect the training data. Its radius is
much smaller than glass marbles [25]. In this case, because
the fingertips need to stay within a closer range to maintain
a stable grasp with the stick, more estimation and control
accuracy are required for the manipulation. Only object
1 in Fig. 4 was used to collect the data that trained the
dynamics model. The other 3 objects were used to test the
model’s generalization ability (see Section IV-D). Initially,
the configuration was similar to Fig. 1. The object was then

Fig. 4. Different objects used in the experiments. Only object 1 was used
to collect the dataset for training the dynamics model. The other objects
were used to test the generalization ability of the learned model

TABLE I
ABSOLUTE AND RELATIVE ERROR ON TEST DATA

With Joint Torque Without Joint Torque
Failure

Strength 0.334(23.4%)± 0.017 0.364(25.4%)± 0.028

Success
Strength 0.122(5.73%)± 0.006 0.130(6.10%)± 0.006

X Position
(mm) 0.512(7.76%)± 0.0252 0.517(7.84%)± 0.0230

Y Position
(mm) 0.570(8.39%)± 0.0474 0.629(9.26%)± 0.0409

Angle
(Radian) 0.148(13.4%)± 0.008 0.147(13.3%)± 0.008

manipulated by randomly selecting actions from the 424
filtered choices to move the stick within the 305mm2 area
on the fingertip, and the process continued indefinitely if the
grasp of the object was maintained in the hand. When the
grasp failed, the robotic hand was reset to a random state, and
the object was manually put back into the hand. The tactile
state (s, x, y, θ) and hand state (joint angle and torque) were
recorded before and after the action. A total of 2250 state
transitions were recorded during the data collection process,
and the grasp failed in 361 of them after the sampled action
was applied, resulting in a failure rate of 16%. This failure
rate is significantly lower than that of random sampling in
the original entire action space, as the robotic hand can
quickly go into an unreasonable state. Because the actions
are sampled uniformly, the resulting stick positions are also
roughly evenly distributed among the fingertip. Compared
with [25], which used 96000 state transitions to train, the data
size in this work is much smaller. However, the approach we
adopted collected the data and trained the model more wisely,
thus making the method data efficient and scale better.

B. Training the Dynamics Model

The original 2250 sampled data was split into a training
set of 1800 samples and a test set of 450 samples. Two
different cases were compared when training the dynamics
model of manipulating the object. One used the full hand
state, including the joint angle feedback from the robotic



hand and the joint torque. The other was only using joint
angle feedback as the hand state. This experiment is adopted
to contrast the effectiveness of the hand torque propriocep-
tion in the presence of high-resolution tactile sensing. The
evaluation of the neural network performance on test data is
summarized in Table I. The results show that predicting the
contact strength is more accessible when the next state is a
successful grasp, as indicated by the lower prediction error.
Although the contact strength prediction error for the failed
cases is around 0.3, it approximately corresponds to only
0.06N in force. The successful grasp strength prediction is
even more accurate. The position errors of both x and y axes
are less than the millimeter level, which indicates that the
neural network can predict the future object locations given
the current object pose and the hand state. Interestingly, the
performances with and without joint torque data do not show
a significant distinction. A possible explanation is that tactile
perception (the object’s pose and contact strength) already
encodes the interaction information between the object and
the robotic fingers, which is lower-dimensional and more
informative than the hand torque data. Therefore, introducing
the hand torque state to the input will provide little additional
information to the system. Hence, the joint torque data will
not be fed into the system in the remainder of this paper to
reduce the neural network complexity.

C. Model Prediction Accuracy

The prediction accuracy of the learned dynamics model
is also tested on real hardware. Specifically, we hope to test
the model’s prediction ability on actions with different output
confidence. To achieve this, the finger was initialized to grasp
the trained object with a random pose. All the discrete actions
from Section III-A were fed into the learned dynamics
model to obtain the predicted contact strength, object pose,
and corresponding confidence. To preserve only actions that
would result in a stable grasp, all actions with contact
strengths less than 1.8 (the threshold between a stable contact
and an unstable one) with greater than 5% probability were
filtered. Among the remaining actions, their resulting contact
center location can be plotted as a probability heat map (as
shown in Fig. 2) to visualize the positional distribution of the
actions. The probability heat map was generated by taking
the maximal probability among all the safe actions at each
location in the tactile image. Mathematically, for a point
M(x, y) on the map M ,

M(x, y) = max
a∈A

Pr(x, y | a) (1)

where A is the set of the remaining actions. The maximum
point in the heat map (brightest point in Fig. 2) corresponds
to an action with the most confident resulting location. By
selecting locations with different probability levels on the
heat map and executing the actions behind these locations,
we can test the dynamics model’s prediction behavior on
actions with varying confidence levels. The values on the
probability heat map are normalized to the range between
0 to 1, referred to as the confidence level in Table II for
visualization and testing purposes. The hand chose the action

with the corresponding confidence level in each run, and
the resulting contact location was observed. The experiment
was repeated for 50 runs for each confidence level to get
the average performance. It can be seen in Table II that
the object did not fall out of the hand for all the cases. It
is evident that filtering the actions by the contact strengths
effectively produces a next state with safe and stable contact.
The correlation between the magnitude of the errors and the
actions’ confidence level is not very strong because although
the confidence level relatively categorizes different actions
for showing the statistics, each run has different absolute
probabilities. Hence, the confidence level only serves to
organize and present the experiment results. In practice, the
absolute probability will be used to estimate the action errors.

TABLE II
ERROR STATISTICS ON REAL HARDWARE

Confidence
Level

X Position Error
(mm)

Y Position Error
(mm)

Object Fall
Frequency

1.0 0.302± 0.190 0.346± 0.234 0/50
0.9 0.507± 0.229 0.414± 0.370 0/50
0.8 0.439± 0.292 0.521± 0.366 0/50
0.7 0.307± 0.258 0.385± 0.283 0/50
0.6 0.575± 0.439 0.531± 0.375 0/50
0.5 0.595± 0.439 0.404± 0.322 0/50
0.4 0.712± 0.429 0.482± 0.317 0/50

For the prediction accuracy on the object’s angle, because
only two fingers are employed during the manipulation, the
predicted distribution of the change of the object orientation
is unimodal and narrowly spread. Therefore, only the one
action with the least standard deviation for output angle is
executed during testing. The prediction error averaged over
50 runs is 0.078± 0.090 radians.

D. Generalization to Novel Objects

To test the dynamics model’s ability to generalize to other
novel objects, in addition to the trained object ( 1# as
shown in Fig. 4), three other objects were used to conduct
the same experiment as in Section IV-C. Object 2# is the
same as the trained object but 2 times longer. Object 3#
is an electric wire piece representing a different material.
Object 4# is a hex key of even more complicated inertial
property. The results are summarized in Table III. In general,
the performance is reduced with larger position errors and
variance due to unseen objects. The results indicate that
object 3# is the easiest to manipulate compared to the other
two, as it falls out of the hand less frequently than the others.
Regarding the objects’ physical properties, object 3# is most
similar to the trained object in terms of radius, length, shape,
etc. The longer length of object 2# makes it more difficult
than object 3# as the inertia has changed. Object 4# is the
most difficult to deal with, as can be anticipated, because
it is heavier, thicker, and has an imbalanced weight. The
positional errors and fall frequencies did not deteriorate much
for all three objects when the confidence level was larger than
0.7. The reason might be that the most confident predictions
are learned from the most basic physical properties of the
interactions, and they tend to be more likely to generalize.



Fig. 5. Predicted and actual contact distances to the finger center by applying the best actions iteratively. On the right, a gradient-based optimization was
added to improve the actions further

This dependency on fall frequency and prediction confidence
level supports using the uncertainty-aware model. By predict-
ing the model’s confidence using multiple MLPs instead of
only one, we can overcome data depletion and overfit by
choosing from confident actions with more stable behavior.
The positional errors were kept within the millimeter level
for most cases. This reveals that the dynamics model learned
some generalizable features and was, to some extent, robust
to the variation of the object property.

TABLE III
ERROR STATISTICS ON DIFFERENT OBJECTS

Confidence
Level

X Position Error
(mm)

Y Position Error
(mm)

Object Fall
Frequency

Object 2
1.0 0.439± 0.093 0.302± 0.253 0/50
0.9 0.375± 0.463 1.062± 0.370 1/50
0.8 0.546± 0.361 0.517± 0.346 2/50
0.7 0.872± 0.590 0.453± 0.322 0/50
0.6 1.097± 0.609 0.653± 0.585 1/50
0.5 0.634± 0.443 0.487± 0.395 1/50
0.4 0.770± 0.531 0.336± 0.424 4/50

Object 3
1.0 0.531± 0.336 0.439± 0.249 0/50
0.9 0.551± 0.565 0.453± 0.322 0/50
0.8 1.330± 0.590 0.551± 0.370 0/50
0.7 0.936± 0.565 0.595± 0.482 3/50
0.6 0.833± 0.356 0.453± 0.366 0/50
0.5 0.712± 0.429 0.434± 0.317 5/50
0.4 0.707± 0.419 0.653± 0.419 1/50

Object 4
1.0 0.404± 0.322 0.707± 0.414 0/50
0.9 0.375± 0.249 0.750± 0.668 2/50
0.8 0.356± 0.297 0.838± 0.658 2/50
0.7 0.736± 0.468 0.575± 0.453 1/50
0.6 0.838± 0.507 0.614± 0.453 2/50
0.5 1.574± 0.863 0.936± 0.755 5/50
0.4 1.145± 0.877 1.330± 1.019 10/50

E. Application: Pose Regulation Experiment

Using the learned dynamics model, we can control the
contact position of the object with the finger. For example,

the contact position can be adjusted to the exact center of the
finger, given any initial configurations. In this experiment,
we placed object 1# approximately 6 mm away from the
center of the finger in a random position. All the valid
actions from Section III-A were fed into the dynamic model
to obtain the corresponding future predictions. Actions that
resulted in unstable contact were first removed (same as
in Section IV-C). Among the remaining ones, the action
that gave a mean location prediction closest to the center
of the finger was selected and executed. This process was
then repeated for 5 steps to make the contact iteratively
closer to the center. Another experiment examined that neural
networks learned a smooth landscape in action space by
using additional gradient-based optimization on the filtered
discrete action choices. The optimization took the `2 norm
of the distance from the finger center to the mean position
prediction as the loss and backpropagated the gradient to the
input action as the direction to improve the original action.
Adam optimizer [28] was adopted, and the optimization was
conducted for 100 iterations with a learning rate of 0.0005.
Both experiments were conducted 30 times to obtain the
expected performance over random initial positions. The
predicted and actual distances from the contact center to
the finger center in each step are shown in Fig. 5. The
results demonstrate that both methods can regulate the con-
tact to approach the finger center. It suggests that although
keeping only the confident actions will reduce the number
of reachable states in the state space, the model can still
reach the desired final state, possibly at the expense of more
motion steps but with uncertainty reduced and, therefore,
safety improved. Moreover, the additional gradient-based
optimization can quickly reduce the distance within the
millimeter level. The improvement with the optimization
also suggests that the learned dynamics model is capable of
predicting the outcome of the original discrete actions and
exhibits good performance on the continuous action space,



making it possible to generalize to unseen actions owing to
the neural network’s interpolation ability.

We compare this result with [25], where a marble is
manipulated instead of a stick-like object. The marble has
simpler dynamics because its radius is larger than the stick,
and the mass is more concentrated; therefore, the marble has
a larger tolerance on the control accuracy. Nonetheless, we
achieved comparable accuracy in controlling the stick with
much less data and model complexity than on the marble.
Moreover, our learned model is uncertainty aware, making
the actions less likely to drop the object. The stick was never
dropped out of the hand in our experiment, which was not
achieved in the prior work.

V. CONCLUSION

This work presented a data-efficient framework for learn-
ing to manipulate a small stick with high accuracy on real
hardware. The approach involves reducing the feasible action
space, leveraging model-based tactile signal extraction, and
utilizing an uncertainty-aware contact dynamics model. The
experimental results demonstrate that the framework achieves
sub-millimeter precision. The learned model also has simpler
complexity and requires less data than similar works. More
importantly, by incorporating the uncertainty-aware model,
we significantly reduced the probability of object fall, al-
though the stick is even more challenging than the marble
to manipulate due to additional dynamics complexity. Using
the learned contact prediction model, our robotic hand can
control the rolling object with precision and safety.
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