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Abstract

In-hand manipulation is challenging in robotics due to the intricate contact dynamics and high degrees

of control freedom. Precise manipulation with high accuracy often requires tactile perception, which

adds further complexity to the system. This paper addresses these challenges in perception and control

and proposes a framework for learning high-resolution tactile dynamics on real hardware that is feasible

and scalable. Specifically, we use a case study on manipulating a small stick using the Allegro hand

equipped with the Digit vision-based tactile sensor to demonstrate the framework’s effectiveness. The

framework includes an action space reduction module, tactile perception module, and learning with

uncertainty module, all designed to operate in low data regimes. With minimal manually collected

data, our learned contact dynamics model achieves grasp stability, sub-millimeter precision, and zero-

shot generalizability across novel objects. The proposed framework demonstrates promising results

for enabling precise in-hand manipulation with tactile feedback on real hardware.

Keywords: Vision-based Tactile sensing, Tactile Control, In-hand Manipulation

1 Introduction

In-hand manipulation is a crucial skill for humans
to manipulate objects, allowing people to uti-
lize the power of various tools. However, robots
have not yet achieved that level of dexterity.
Robotic in-hand manipulation will play an essen-
tial role in extending the deployment of robots for
accomplishing more complex industrial tasks. The
parallel-jaw grippers can only reply on extrinsic
contact (Dafle et al., 2014) to regrasp an object
to change its relative pose in hand, but a robotic

hand can achieve it with more degrees of free-
dom of the fingers (Fig. 1). The motion primitive
of rolling a stick-like object between two fingers
can be used to tighten or loosen the screws or
change the pose of the grasped object after the
initial grasp. It can greatly improve the flexibility
of robotic systems. For example, the manipulator
has to move back and forth to adjust the pose
of the in-hand cable (She et al., 2021), but it is
not suitable for confined space industrial manip-
ulation. In that case, the in-hand adjustment
becomes the optimal motion to adopt. Although
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this task seems to be simple, it is non-trivial to
accomplish. Robotic hands’ high degrees of free-
dom increases their flexibility but also induces
challenges in designing control policies. The pre-
cision requirement poses difficulty to sim-to-real
approaches (Handa et al., 2023) and makes high-
resolution tactile sensing indispensable. Among
various types of tactile sensors, vision-based tac-
tile sensors can provide superior sensing resolution
at a low design and fabrication cost (Shimono-
mura, 2019). Although many prior works have
been trying to reduce the learning complexity of
in-hand manipulation, either with tactile feedback
(Nagabandi, Konolige, Levine, & Kumar, 2020;
Yin, Huang, Qin, Chen, & Wang, 2023) or without
(Qi, Kumar, Calandra, Ma, & Malik, 2023), they
cannot capture the fine contact dynamics, such as
the contact position and contact strength, which
are crucial for tasks requiring precise contact con-
trol within the fingertip. To explore the potential
of learning tactile in-hand manipulation on real
hardware, we try to safely and precisely achieve
the rolling stick motion with a small amount of
real data. The primary contributions of this paper
include:

• A simple method to accurately estimate the
grasping strength and pose of stick-like objects
in hand from tactile feedback.

• A framework to learn from a small amount of
data while achieving high precision in learning
tactile dynamics

• A real-hardware case study to show the pro-
posed method can enable rolling object pose
control with submillimeter accuracy.

The proposed learning framework includes action
space reduction, model-based tactile signal extrac-
tion, and uncertainty-aware dynamics learning.
In addition to manipulating the rolling object,
the authors hope the framework will also inspire
researchers to solve industrial in-hand manip-
ulation problems on real hardware in a more
data-efficient manner.

This paper is structured as follows. Section 2
reviews related work on vision-based tactile sig-
nal processing and in-hand manipulation. In
Section 3, we introduce the three essential mod-
ules of the framework, each specifically designed
to facilitate efficient learning. In Section 4, quan-
titative experiments are conducted to validate the
accuracy of the learned contact dynamics model,

using both test data and hardware tests. We also
extend the experiments to include novel object
testing and pose control testing, demonstrating
the usefulness of the learned model for manipu-
lating unseen objects. Section 5 and 6 give the
limitation and conclusion of the work.

2 Related Works

Robotic in-hand manipulation has been consid-
ered important due to its flexibility for various
daily tasks. Early studies rely on task-specific
hardware to achieve fast and accurate object
manipulation (Ishihara, Namiki, Ishikawa, & Shi-
mojo, 2006). In recent years stronger and faster
robotic hands have been developed (Kumar, Xu,
& Todorov, 2013), allowing the exploration of
more generic human-like tasks. To effectively uti-
lize the high degrees of freedom in the place of
complex contact dynamics, reinforcement learn-
ing approaches become more suitable (Van Hoof,
Hermans, Neumann, & Peters, 2015). For exam-
ple, Andrychowicz et al. (2020) showed for the
first time using end-to-end deep-RL based method
for controlling the contact-rich in-hand manipula-
tion, but the training and sim-to-real transfer are
difficult to reproduce. Therefore, the core ques-
tion in multi-finger in-hand manipulation has been
improving the sample efficiency of learning in high
dimensionality (Kober, Bagnell, & Peters, 2013)
to make the methods more scalable and manage-
able. Chen Chen et al. (2013) studied the human
hand kinematics and dynamics constraints, which
inspires novel robotic hand hardware and algo-
rithm design to reduce the action complexity.
Solak and Jamone (2019) attempted to use kines-
thetic human demonstrations and learned dynam-
ical movement primitives to translate and rotate
the objects in the hand while maintaining a sta-
ble grasp. Sub-optimal controllers using domain
knowledge (Khandate, Mehlman, Wei, & Cio-
carlie, 2023) and demonstration through human
hand teleoperation (Arunachalam, Silwal, Evans,
& Pinto, 2023) were also proven to be effective in
improving the sample efficiency in reinforcement
learning for in-hand manipulation. Nagabandi et
al. (2020) combined deep dynamics model and
online planning for closed-loop control, which is
promising for efficiently learning complex dexter-
ous manipulation skills with a limited amount of
data. Shaw, Bahl, and Pathak (2023) extracted
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Fig. 1 The hardware setup for this work. Two fingers of the Allegro robotic hand are used to manipulate a piece of stick.
The Digit vision-based tactile sensor on the thumb finger reads the contact state and enables manipulation without visual
feedback

basic manipulation primitives from internet videos
as visual, action, and physical priors. Many tech-
niques (Q. Chen et al., 2023; T. Chen et al., 2023;
Qi et al., 2023) on sim-to-real transfer were also
emerging that allow the learned models in simula-
tion to be deployed on real hardware. A problem
with these systems above is that they are designed
for palm-scale in-hand manipulation rather than
fingertip-scale and cannot capture the fine contact
dynamics within the fingertip, hence unsuitable
for precise manipulation.

To control the subtle contact within the fin-
gertips, high-resolution tactile sensing is desired
as feedback. Vision-based tactile sensors using
digital cameras to capture the sensing surface
deformation are promising as they have high sens-
ing resolution, easy manufacturing methods, and
robustness in harsh settings. It also synergizes
tactile signal processing with visual signal pro-
cessing tools (Dong et al., 2021). Various kinds of
vision-based tactile sensors (Du, Zhang, & Wang,
2022; Sferrazza & D’Andrea, 2019; Taylor, Dong,
& Rodriguez, 2022; Ward-Cherrier et al., 2018;
Yuan, Dong, & Adelson, 2017) are being devel-
oped that satisfy different needs on the tactile
signal perception. Among them, the Digit tactile
sensor (Lambeta et al., 2020) achieved enhanced
reliability and compact design that can fit into
the Allegro hand fingertip. Lambeta et al. (2020)
adopted an autoencoder structure to extract the

contact center and strength for Digit tactile sen-
sor in a self-supervised manner. They achieved the
manipulation of a marble ball within the two fin-
gertips but consumed more than 10 hours of real
data. We hope to solve the rolling stick problem,
which is more difficult than marble manipulation,
in a data-efficient manner to make learning precise
contact dynamics more scalable on real hardware.

3 Method Description

The proposed method for learning precise tac-
tile dynamics relies on three key components: the
action space proposal, the tactile perception, and
learning the dynamics model with uncertainty,
each specifically designed to enhance learning effi-
ciency. The whole pipeline of the learned model is
shown in Fig. 2.

3.1 Action Space Reduction

This work aims to focus the effort on the part of
the action space that is more conducive to main-
taining a stable grasp. To achieve this, we reduced
the 8 DOF (degrees of freedom) two-finger sys-
tem to 7 DOF by fixing the base joint of the
index finger. This is because simultaneously mov-
ing the base joints of the index finger and the
thumb is unnecessary for this task. Then a uni-
formly sampled discrete action space was formed
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Fig. 2 The pipeline of the learned tactile dynamics model. The predictions from multiple multilayer perceptrons are
ensembled to produce the future tactile state distribution (parameterized by a multivariate normal distribution) given the
current tactile state, hand state, and action. By selecting the maximum value of the contact position marginal distribution
across all actions, a heat map representation can be generated to visualize the outcomes of the actions

by taking a step size of 0.1 radius in the 7 DOF
joint space. It is because it is easier to perform
kinematics filtering on discrete actions than on
continuous actions since for discrete actions we
can do offline filtering and only keep the remaining
ones, but for continuous actions we have to filter
online as well, which may introduce extra over-
head. Then the actions were filtered by calculating
the forward kinematics of the fingers. Although
for in-hand manipulation, the forward kinemat-
ics of robotic hands are usually not as precise as
robotics arms, mainly due to less powerful hard-
ware, it is still a helpful tool to remove most of
the irrelevant robot finger configurations. The fil-
tering was based on a box constraint to make the
two fingertips close to each other and an orienta-
tion constraint to make the two fingertips roughly
facing each other. The parameters for these two
constraints were naively adjusted by hand. Still,
the method effectively reduced the action space
as most configurations did not satisfy these two
simple constraints (see Section 4.1). This idea can
be extended to use learned classifiers (filters) from
demonstrations (Arunachalam et al., 2023) for

space reduction in more complex tasks and is left
as future work.

3.2 Tactile Perception

To achieve efficient tactile perception, we consid-
ered a strategy that exploits the contact geometry
model. The pipeline (shown in Fig. 3) was inspired
by the method for cable manipulation by She et
al. (2021) but used the color difference of the tac-
tile image instead of the contact depth image for
contact detection. The observation is that thresh-
olding on the absolute value of the difference
image is often as effective as thresholding on the
contact depth for PCA (principal component anal-
ysis). Requiring no contact depth reconstruction
also implies that the tactile sensor needs not to
be calibrated, which is not the case in general for
GelSight tactile sensors (Yuan et al., 2017). This
relaxation saves a lot of effort since the calibration
is harder for the Digit sensor than GelSight due to
non-uniform illumination in different colors across
sensors. The tactile perception produces four num-
bers (s, x, y, θ). s is the mean value of the absolute
difference, averaged across the locations and the
color channels, and serves as a contact strength
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Fig. 3 The procedure to get the contact center position and orientation

indicator, i.e., how strong the current contact is.
By inspection, we set a contact strength thresh-
old of 1.8 to distinguish a successful grasp from a
failed one. x, y and θ are the contact center and
object angle calculated with PCA.

3.3 The Dynamics Model

An uncertainty-aware dynamics model was
employed following the idea by Lakshmi-
narayanan, Pritzel, and Blundell (2017) to adapt
to a low data regime and ensure a safe grasp
outcome. We chose a simple MLP (multilayer per-
ceptron) structure because it can model complex
contact dynamics without prior knowledge of the
actual physics, making the method more generic.
16 MLPs were trained separately under negative
log-likelihood loss with independent random ini-
tialization and shuffling. Then their outputs were
ensembled to obtain a single prediction and its
uncertainty (covariance). The idea is to ensure
the actions to be executed have high confidence in
a contact strength greater than 1.8 for the grasp
to be solid. The contact location and orientation
predictions also come with uncertainty, making
it possible to plan and control with uncertainty
for more accurate and generalizable results. Note
that the full loss (in s, x, y and θ) is incurred
only when the next grasp is a successful (stable)
grasp. When the next grasp fails, only the loss
in s is backpropagated. This strategy helps to
preserve the high uncertainty in the prediction of
x, y and θ when the grasp fails and increases the
robustness of the system. We set the multilayer
perceptrons to have five layers with 32 hidden

units for each and use ReLU activation functions.
The dropout rate is set at 0.1. We also use 2 num-
bers to represent a single rotation to facilitate
learning angle continuity, as discussed by Zhou,
Barnes, Lu, Yang, and Li (2019).

4 Experiments and Results

4.1 Hardware Setup and Data

Collection

With 0.1 radius sampling step size, the original 8
degree of freedom joint angle action space is a vast
space with 2244806784 discrete actions. However,
action filtering retained only 424 actions, which
is only around 0.000019% of the original space.
This indicates that action filtering through kine-
matics is a simple yet effective strategy to reduce
redundant actions and make the data collection
process more efficient. A wooden stick with a 2.5
mm radius and 12.5 cm length (shown as object
1 in Fig 4) was used to collect the training data.
Its radius is much smaller than the radius of the
ball by Lambeta et al. (2020), requiring more esti-
mation and control accuracy to manipulate. Note
that only object 1 in Fig. 4 was used to collect the
data that trained the dynamics model. The other
3 objects were used to test the model’s general-
ization ability (see Section 4.4). The object was
manipulated by randomly selecting actions from
the 424 proposed actions, and the process con-
tinued indefinitely if the grasp of the object was
maintained in the hand. When the grasp failed,
the robotic hand was reset to a random state, and
the object was manually put back into the hand.
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Fig. 4 Different objects used in the experiments. Only object 1 was used to collect the dataset for training the dynamics
model. The other objects were used to test the generalization ability of the learned model

The tactile state (s, x, y, θ) and hand state (joint
angle and joint torque) were recorded before and
after the action. A total of 2250 state transitions
were recorded during the data collection process,
and the grasp failed in 361 of them after the sam-
pled action was applied, resulting in a failure rate
of 16%. This failure rate is significantly lower than
that of random sampling in the original entire
action space, as the robotic hand can easily go into
an unreasonable state. Compared with Lambeta
et al. (2020), which used 96000 state transitions
to train, the data size in this work is only 2.3% of
that. However, the approach we adopted collected
the data and trained the model more wisely, thus
making the method data efficient and scale better.

4.2 Training the Dynamics Model

The original 2250 sampled data was split into a
training set of 1800 samples and a test set of 450
samples. Two different cases were compared when
training the dynamics model of manipulating the
object. One used the full hand state, including
the joint angle feedback from the robotic hand
and the joint torque. The other was only using
joint angle feedback as the hand state. The idea

was to see if the hand torque proprioception helps
accomplish the task. The evaluation of the neural
network performance on test data is summarized
in Table 1. The results show that predicting the
contact strength is easier when the next state is
a successful grasp, as indicated by the lower pre-
diction error. However, both successful and failed
grasps achieve reasonably small prediction errors.
The position errors of both x and y axis are less
than millimeter level, which indicates that the
neural network can predict the future object loca-
tions given the current object pose and the hand
state. Interestingly, the performances with and
without joint torque data do not show a signifi-
cant distinction. The possible explanation is that
the tactile perception (the object pose and contact
strength) already encodes the interaction informa-
tion between the object and the robotic fingers,
which is lower-dimensional and more informative
than the hand torque data. Therefore, introduc-
ing the hand torque state to the input will provide
little additional information to the system. Hence,
the joint torque data will not be fed into the sys-
tem in the remainder of this paper to reduce the
neural network complexity.

6



Table 1 Absolute Error on Test Data

With Joint Torque Without Joint Torque
Failure Strength 0.334± 0.017 0.364± 0.028
Success Strength 0.122± 0.006 0.130± 0.006

X Position
(mm)

0.512± 0.0252 0.517± 0.0230

Y Position
(mm)

0.570± 0.0474 0.629± 0.0409

Angle
(Radius)

0.148± 0.008 0.147± 0.008

4.3 Model Prediction Accuracy

The prediction accuracy of the learned dynamics
model is also tested on real hardware. Specifi-
cally, we hope to test the model’s prediction ability
on actions with different output confidence. To
achieve this, the finger was initialized to grasp the
object that the model was trained on with a ran-
dom pose. All the discrete actions from Section 3.1
were fed into the learned dynamics model to
obtain the predicted contact strength, object pose,
and their corresponding confidence. To only pre-
serve actions that would result in a stable grasp,
all the actions that had contact strengths less than
1.8 (the threshold between a solid contact and a
loose contact) with greater than 5% probability
were filtered. Among the remaining actions, their
resulting contact center location can be plotted as
a probability heat map (as shown in Fig. 2) to
visualize the positional distribution of the actions
better. The probability heat map was generated
by taking the maximal probability among all the
safe actions at each location in the tactile image.
Mathematically, for a point M(x, y) on the map
M ,

M(x, y) = max
a∈A

Pr(x, y | a) (1)

where A is the set of the remaining actions.
The maximum point in the heat map (brightest
point in Fig. 2) corresponds to an action with
the most confident resulting location. By select-
ing locations with different probability levels on
the heat map and executing the actions behind
these locations, we can test the dynamics model’s
prediction behavior on actions with varying con-
fidence levels. The values on the probability heat
map are normalized to the range between 0 to
1, which is referred to as the relative probabil-
ity ratio in Table 2 for visualization and testing
purposes. In each run, the hand chose the action

with the corresponding relative probability ratio,
and the resulting contact location was observed.
The experiment was repeated for 50 runs for each
probability ratio to get the average performance.
It can be seen on Table 2 that the object did not
fall out of the hand for all the cases. It is evident
that filtering the actions by the contact strengths
effectively produces a next state with safe and
stable contact. The correlation between the mag-
nitude of the errors and the actions’ confidence
level is not very strong. This is because although
the relative probability ratio categorizes different
actions for showing the statistics, they have differ-
ent absolute probabilities in each run. Hence the
relative probability ratio only serves as a way to
organize and present the experiment. In practice,
the absolute probability will be used to estimate
the action errors.

For the prediction accuracy on the object’s
angle, because only two fingers are employed dur-
ing the manipulation, the predicted distribution
of the change of the object orientation is uni-
modal and narrowly spread. Therefore, only the
one action with the least standard deviation for
output angle is executed during testing. The pre-
diction error averaged over 50 runs is 0.078±0.090
radius.

4.4 Generalization to Novel Objects

To test the dynamics model’s ability to gener-
alize to other novel objects, in addition to the
trained object ( 1# as shown in Fig. 4), three other
objects were used to conduct the same experiment
as in Section 4.3. Object 2# is the same as the
trained object but 2 times longer. Object 3# is a
small cable piece representing a different material.
Object 4# is a hex key of even more complicated
inertial property. The results are summarized in
Table 3. The results indicate that object 3# is
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Table 2 Error Statistics on Real Hardware

Probability
Ratio

X Position Error
(mm)

Y Position Error
(mm)

Object Fall
Frequency

1.0 0.302± 0.190 0.346± 0.234 0/50
0.9 0.507± 0.229 0.414± 0.370 0/50
0.8 0.439± 0.292 0.521± 0.366 0/50
0.7 0.307± 0.258 0.385± 0.283 0/50
0.6 0.575± 0.439 0.531± 0.375 0/50
0.5 0.595± 0.439 0.404± 0.322 0/50
0.4 0.712± 0.429 0.482± 0.317 0/50

Table 3 Error Statistics on Different Objects

Probability
Ratio

X Position Error
(mm)

Y Position Error
(mm)

Object Fall
Frequency

Object 2
1.0 0.439± 0.093 0.302± 0.253 0/50
0.9 0.375± 0.463 1.062± 0.370 1/50
0.8 0.546± 0.361 0.517± 0.346 2/50
0.7 0.872± 0.590 0.453± 0.322 0/50
0.6 1.097± 0.609 0.653± 0.585 1/50
0.5 0.634± 0.443 0.487± 0.395 1/50
0.4 0.770± 0.531 0.336± 0.424 4/50

Object 3
1.0 0.531± 0.336 0.439± 0.249 0/50
0.9 0.551± 0.565 0.453± 0.322 0/50
0.8 1.330± 0.590 0.551± 0.370 0/50
0.7 0.936± 0.565 0.595± 0.482 3/50
0.6 0.833± 0.356 0.453± 0.366 0/50
0.5 0.712± 0.429 0.434± 0.317 5/50
0.4 0.707± 0.419 0.653± 0.419 1/50

Object 4
1.0 0.404± 0.322 0.707± 0.414 0/50
0.9 0.375± 0.249 0.750± 0.668 2/50
0.8 0.356± 0.297 0.838± 0.658 2/50
0.7 0.736± 0.468 0.575± 0.453 1/50
0.6 0.838± 0.507 0.614± 0.453 2/50
0.5 1.574± 0.863 0.936± 0.755 5/50
0.4 1.145± 0.877 1.330± 1.019 10/50

the easiest to manipulate compared to the other
two, as it falls out of the hand less frequently
than the others. Regarding the objects’ physical
properties, object 3# is indeed most similar to
the trained object. Object 4# is the most difficult
to deal with, as can be anticipated, because it is
heavier, thicker, and with an imbalanced weight.
The positional errors and fall frequencies did not
deteriorate much for all three objects when the

probability ratio was larger than 0.7. The posi-
tional errors were kept within the milliliter level
for most cases. This reveals that the dynamics
model learned some generalizable features and
was, to some extent, robust to the variation of the
object property.
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4.5 Application: Pose Regulation

Experiment

Using the learned dynamics model, we can con-
trol the contact position of the object with the
finger. For example, the contact position can be
adjusted to the exact center of the finger, given
any initial configurations. In this experiment, we
randomly placed object 1# approximately 6 mm
away from the center of the finger. All the valid
actions from Section 3.1 were fed into the dynamic
model to obtain the corresponding future predic-
tions. Actions that resulted in unstable contact
were first removed (same as in Section 4.3), and
among all the remaining actions, the action that
gave a mean location prediction closest to the
center of the finger was selected and executed.
This process was then repeated for 5 steps to
make the contact iteratively closer to the center.
Another experiment was performed to examine
that neural network learned a smooth landscape
in action space by using additional gradient-based
optimization on the original proposed discrete
actions. The optimization took the ℓ2 norm of the
distance from the finger center to the mean posi-
tion prediction as the loss and backpropagated
the gradient to the input action as the direction
to improve the original action. Adam optimizer
(Kingma & Ba, 2014) was adopted and the opti-
mization was conducted for 100 iterations with
a learning rate of 0.0005. Both experiments were
conducted 30 times to obtain the expected perfor-
mance. The predicted and actual distances from
the contact center to the finger center in each
step are shown in Fig. 5. The results demon-
strate that both methods can regulate the contact
to approach the finger center. Still, the addi-
tional gradient-based optimization can quickly
reduce the distance within the millimeter level.
The improvement with the optimization also sug-
gests that the learned dynamics model not only is
capable of predicting the outcome of the original
discrete actions but also exhibits good perfor-
mance on the continuous action space, making it
possible to generalize to unseen actions owing to
the neural network’s interpolation ability.

5 Limitation

The prediction horizon is limited to 1 in this work,
which is sufficient for simple pose regulations but

may not yield optimal behavior and may get stuck
in complex pose objectives. We plan to extend
the prediction horizon to enable multi-step pre-
dictions. This will allow for more flexible planning
and control, which may lead to more advanced
manipulation tasks. In this work, only two fin-
gers were considered to grasp the stick, which
limited the controllability over the object’s orien-
tation. We will explore using additional fingers to
control the full pose of the object for increased
dexterity. Although the modules for this frame-
work are tailored for the stick manipulation task,
the same philosophy of feasible robot configura-
tion classification and discretization, model-based
tactile perception and uncertainty-aware dynam-
ics model can be applied to many other tasks for
improving the learning efficiency. Overall, the key
contribution of this work is to provide a promis-
ing modular framework for future research on real
hardware dexterous manipulation with limited
data.

6 Conclusion

This work presented a data-efficient framework
on real hardware for learning to manipulate a
small stick with high accuracy. The approach
involves reducing the feasible action space, lever-
aging model-based tactile signal extraction, and
utilizing an uncertainty-aware contact dynamics
model. The experimental results demonstrate that
the framework achieves sub-millimeter precision
with only 2.3% of the data required by previous
work. Using the learned contact prediction model,
our robotic hand can manipulate the rolling object
with precision and safety.
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